Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:02:00.742Z Has data issue: false hasContentIssue false

The evaluation of van der Waals interaction in the oriented-attachment growth of nanotubes

Published online by Cambridge University Press:  19 June 2014

Weixuan Jin
Affiliation:
School of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu, Sichuan 611731, P. R. China
Weidong He*
Affiliation:
School of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu, Sichuan 611731, P. R. China
Kechun Wen
Affiliation:
School of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu, Sichuan 611731, P. R. China
Xiao Lin*
Affiliation:
School of Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Yuqian Zhang
Affiliation:
School of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu, Sichuan 611731, P. R. China
Huanqi Cao
Affiliation:
School of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu, Sichuan 611731, P. R. China Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-S8-28 O-okayama, Meguro, Tokyo 152-8552, Japan.
Yuanqiang Song
Affiliation:
School of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu, Sichuan 611731, P. R. China
Weiqiang Lv
Affiliation:
School of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu, Sichuan 611731, P. R. China
James H. Dickerson*
Affiliation:
Department of Physics, Brown University, Providence, RI 02912, US.
Get access

Abstract

Taking the advantage of nanomaterials to protect the environment and avoiding the side effect need a fundamental understanding of the growth mechanism of the nanomaterials. Here, the van der Waals interaction between a nanoparticle and a nanotube in the oriented-attachment growth of nanotubes is quantitatively evaluated for the first time. In particular, the correlation between van der Waals interaction and the growth parameters is investigated in depth. Our work opens up the opportunity of studying the important interparticle interactions in the oriented attachment growth of nanotubes.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R. and Ramakrishna, S., Energy & Environmental Science, 2012, 5, 80758109.CrossRefGoogle Scholar
Chen, C., Hu, J., Xu, D., Tan, X., Meng, Y. and Wang, X., Journal of Colloid and Interface Science, 2008, 323, 3341.CrossRefGoogle Scholar
Tian, X., Zhou, S., Zhang, Z., He, X., Yu, M. and Lin, D., Environmental Science & Technology, 2010, 44, 81448149.CrossRefGoogle Scholar
Chen, S., Liu, C., Yang, M., Lu, D., Zhu, L. and Wang, Z., Journal of Hazardous Materials, 2009, 170, 247251.CrossRefGoogle Scholar
Mauter, M. S. and Elimelech, M., Environmental Science & Technology, 2008, 42, 58435859.CrossRefGoogle Scholar
Wang, X., Chen, C., Hu, W., Ding, A., Xu, D. and Zhou, X., Environmental Science & Technology, 2005, 39, 28562860.CrossRefGoogle Scholar
Cho, H.-H., Wepasnick, K., Smith, B. A., Bangash, F. K., Fairbrother, D. H. and Ball, W. P., Langmuir, 2009, 26, 967981.CrossRefGoogle Scholar
Yang, L., Chen, B., Luo, S., Li, J., Liu, R. and Cai, Q., Environmental Science & Technology, 2010, 44, 78847889.CrossRefGoogle Scholar
Davis, S. E., Ide, M. S. and Davis, R. J., Green Chemistry, 2013, 15, 1745.CrossRefGoogle Scholar
Li, H., Han, L., Cooper-White, J. and Kim, I., Green Chemistry, 2012, 14, 586591.CrossRefGoogle Scholar
Vecitis, C. D., Schnoor, M. H., Rahaman, M. S., Schiffman, J. D. and Elimelech, M., Environmental Science & Technology, 2011, 45, 36723679.CrossRefGoogle Scholar
Brady-Estévez, A. S., Schnoor, M. H., Vecitis, C. D., Saleh, N. B. and Elimelech, M., Langmuir, 2010, 26, 1497514982.CrossRefGoogle Scholar
Sun, Z., Zhao, Y., Xie, Y., Tao, R., Zhang, H., Huang, C. and Liu, Z., Green Chemistry, 2010, 12, 10071011.CrossRefGoogle Scholar
Hou, Y., Li, X., Zhao, Q., Quan, X. and Chen, G., Environmental Science & Technology, 2010, 44, 50985103.CrossRefGoogle Scholar
Li, Q. and Shang, J. K., Environmental Science & Technology, 2009, 43, 89238929.CrossRefGoogle Scholar
Liu, Z., Zhang, X., Nishimoto, S., Murakami, T. and Fujishima, A., Environmental Science & Technology, 2008, 42, 85478551.CrossRefGoogle Scholar
Scheringer, M., Nat Nano, 2008, 3, 322323.CrossRefGoogle Scholar
Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J. and Lead, J. R., Environmental Toxicology and Chemistry, 2008, 27, 18251851.CrossRefGoogle Scholar
Lam, C.-w., James, J. T., McCluskey, R., Arepalli, S. and Hunter, R. L., Critical Reviews in Toxicology, 2006, 36, 189217.CrossRefGoogle Scholar
Wiesner, M. R., Lowry, G. V., Jones, K. L., Hochella, J. M. F., Di Giulio, R. T., Casman, E. and Bernhardt, E. S., Environmental Science & Technology, 2009, 43, 64586462.CrossRefGoogle Scholar
Plata, D. e. L., Hart, A. J., Reddy, C. M. and Gschwend, P. M., Environmental Science & Technology, 2009, 43, 83678373.CrossRefGoogle Scholar
Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J. and Warheit, D. B., Nature, 2006, 444, 267269.CrossRefGoogle Scholar
McNaught, A. D. and Wilkinson, A., Blackwell Scientific Publications, Oxford 1997.Google Scholar
Tang, Z., Kotov, N. A. and Giersig, M., Science, 2002, 297, 237240.CrossRefGoogle Scholar
Huang, F., Zhang, H. and Banfield, J. F., Nano Letters, 2003, 3, 373378.CrossRefGoogle Scholar
Peng, X., Wickham, J. and Alivisatos, A. P., Journal of the American Chemical Society, 1998, 120, 53435344.CrossRefGoogle Scholar
Krill, C. E. III, Helfen, L., Michels, D., Natter, H., Fitch, A., Masson, O. and Birringer, R., Physical Review Letters, 2001, 86, 842845.CrossRefGoogle Scholar
Lou, X. W. and Zeng, H. C., Journal of the American Chemical Society, 2003, 125, 26972704.CrossRefGoogle Scholar
Penn, R. L. and Banfield, J. F., Science, 1998, 281, 969971.CrossRefGoogle Scholar
Yu, Z., Hahn, M. A., Maccagnano-Zacher, S. E., Calcines, J., Krauss, T. D., Alldredge, E. S. and Silcox, J., ACS Nano, 2008, 2, 11791188.CrossRefGoogle Scholar
Zhang, H. and Banfield, J. F., American Mineralogist, 1999, 84, 528535.CrossRefGoogle Scholar
Zhang, J., Huang, F. and Lin, Z., Nanoscale, 2010, 2, 1834.CrossRefGoogle Scholar
Li, D., Nielsen, M. H., Lee, J. R. I., Frandsen, C., Banfield, J. F. and De Yoreo, J. J., Science, 2012, 336, 10141018.CrossRefGoogle Scholar
He, W., Lin, J., Lin, X., Lu, N., Zhou, M. and Zhang, K. H. L., Analyst, 2012, 137, 49174920.CrossRefGoogle Scholar
He, W., CrystEngComm, 2013, In press.Google Scholar
He, W., Lin, J., Wang, B., Tuo, S., Pantelides, S. T. and Dickerson, J. H., Physical Chemistry Chemical Physics, 2012, 14, 45484553.CrossRefGoogle Scholar
Kim, Y. H., Lee, J. H., Shin, D.-W., Park, S. M., Moon, J. S., Nam, J. G. and Yoo, J.-B., Chemical Communications, 2010, 46, 22922294.CrossRefGoogle Scholar
He, W. and Dickerson, J. H., Applied Physics Letters, 2011, 98, 081914.CrossRefGoogle Scholar
Lv, W., He, W., Wen, K., Wang, X., Niu, Y., Dickerson, J.H. and Wang, Z., Nanoscale, 2014, in press, doi: 10.1039/C3NR04717B.Google ScholarPubMed