Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T18:26:17.821Z Has data issue: false hasContentIssue false

Evaluation of the Electrical Properties, Piezoresistivity and Noise of poly-SiGe for MEMS-above-CMOS applications

Published online by Cambridge University Press:  31 January 2011

Pilar Gonzalez
Affiliation:
[email protected], IMEC, Leuven, Belgium
Silvia Lenci
Affiliation:
[email protected], IMEC, Leuven, Belgium
Luc Haspeslagh
Affiliation:
[email protected], IMEC, Leuven, Belgium
Kristin De Meyer
Affiliation:
[email protected], IMEC, Leuven, Belgium
Ann Witvrouw
Affiliation:
[email protected], IMEC, Leuven, Belgium
Get access

Abstract

In this work, the electrical properties of heavily doped poly-SiGe deposited at temperatures compatible with MEMS integration on top of standard CMOS are reported. The properties studied are resistivity, temperature coefficient of resistance, noise, piezoresistivity, Hall mobility and effective carrier concentration. The obtained results prove the potential of using poly-SiGe as a sensing layer for MEMS-above-CMOS applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Witvrouw, A. et al. , “Poly SiGe: a Superb Material for MEMS”, proc. MRS, vol. 782, pp. 2536, 2004.Google Scholar
2 Sedky, S et al. , “Experimetal Determination of the maximum post-processing temperature of MEMS on top of standard CMOS wafers”, IEEE Trans. Electron Devices, Vol.48 (2), pp. 19, 2001.Google Scholar
3 Bang, D. et al. , “Resistivity of boron and phosphorus doped polycrystalline Si1-xGex films”, Applied Physics Letters, 66 (2), pp. 195197, (1995).Google Scholar
4 King, T.J. et al. , “Deposition and properties of low-pressure chemical vapor deposited polycrystalline silicon-germanium films”, Journal of The Electrochemical Society, 141, 22352241 (1994).Google Scholar
5 King, T.J. et al. , “A low temperature (≤550°C) silicon germanium MOS thin-film transistor technology for large area electronics”, IEDM '91 technical digest, 567570.Google Scholar
6 Bryce, G. et al. , ‘Simultaneous optimization of the material properties, uniformity and deposition rate of polycrystalline CVD and PECVD Silicon-Germanium layers for MEMS applications’, Proc. ECS'08, 16 (10), pp. 353364 (2008).Google Scholar
7 Rydberg, M. et al. , “Temperature Coefficient of Resistivity in Heavily Doped Oxigen-Rich Polysilicon”, Journal of The Electrochemical Society, 148 (12) pp 725733 (2001)Google Scholar
8 Sedky, S. et al. , “Electrical Properties and Noise of Poly SiGe deposited at Temperatures Compatible With MEMS Integration on Top of Standard CMOS”, MRS Proceedings, vol. 729 (2002)Google Scholar
9 Boutchich, M. et al. , “Characterization of Phosphorus and Boron Heavily Doped LPCVD Polysilicon Films in the temperature Range 293-373 K”, IEEE Electron Device Letters, 23 (3), pp. 139141 (2002)Google Scholar
10 Bhat, K. N.Silicon Micromachined Pressure Sensors”, Journal of the Indian Institute of Science, vol. 87:1, 2007 Google Scholar
11 Lenci, S. et al. , “Determination of the piezoresistivity of microcrystalline Silicon-Germanium and application to a pressure sensor”, Proc. MEMS '08, 427430 Google Scholar
12 Gonzalez, P. et al. , “Evaluation of Piezoresistivity and 1/f Noise of Polycrystalline SiGe for MEMS sensors applications”, Proceedings Eurosensors '08, pp. 881884 Google Scholar
13 Sharpe, W.N. et al. , “A New Technique for Measuring Properties of Thin Films”, Journal of micromechanical systems, 6 (3) (1997)Google Scholar
14 French, P.J. Evans, A.G.R, “Piezoresistance of Polysilicon”, Electronics Letters, Vol 20 (24), 1984 Google Scholar
15 Sze, S.M, Semiconductor Sensors, John Wiley & Sons, Inc. (1994)Google Scholar
16 Hooge, F.N, “1/f noise is no surface effect”, Phys Letters A, Vol.29, pp. 139140, 1969 Google Scholar
17 Deen, M.J.Low frequency noise in heavily doped polysilicon thin film resistors”, Journal Vacuum Science Technology B, 16 (4), pp. 18811884 (1998)Google Scholar
18 Chen, X.Y. et al. , “1/f noise in poly-SiGe analyzed in term of mobility fluctuations”, Solid-State Electronics 43, pp. 17151724 (1999)Google Scholar
19 Chen, K. et al. , “Analysis of low-frequency noise in boron-doped polycrystalline silicon-germanium resistors”, Applied physics letters, 81 (14), pp.25782580 (2002)Google Scholar