Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:38:46.274Z Has data issue: false hasContentIssue false

Evaluation of the Bonded Silicon-on-Insulator Wafer with Lifetime Measurement Using a Non-Contact Laser-Microwave Method

Published online by Cambridge University Press:  15 February 2011

Akira Usami
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan.
Yuji Yamaguchi
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan.
Masaya Ichimura
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan.
Shun-ichiro Ishigami
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan.
Kazunori Matsuki
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan.
Tsutomu Takeuchi
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan.
Takao Wada
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan.
Get access

Abstract

In this study, we evaluated the electrical properties of the bonded silicon-on-insulator (SOI) wafers with lifetime measurements using a non-contact laser-microwave method. We prepared one group that consisted of bonded SOI wafers with different active layer thicknesses (I0,30,100μm) and another group consisting of bonded SOI wafers with different buried oxide layer thicknesses(0,0.01,0.1,0.75μm). Primary mode lifetime (τ1) was measured by the photoconductivity decay (PCP) method using the laser diode (λ= 774nm) as a carrier-injected light source. Steady-state change in the conductivity was measured by the photoconductivity modulation (PCM) method using a He-Ne laser (λ = 633nm) as a carrier-injected light source. τ1 decreases as the active layer thickness decreases. The PCM intensity also decreases with decreasing active layer thickness. Surface and interface recombination rates of the SOI are increased with decreasing layer thickness. The PCM intensity also decreases as the buried layer thickness decreases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maszara, W. P., J. Electrochem. Soc., 138, 341 (1991)Google Scholar
2. Abe, T., Takei, T., Uchiyama, A., Yoshizawa, K. and Nakazato, Y., Jpn. J. Appl. Phys., 29, L2311 (1990)Google Scholar
3. Izumi, K., Doken, M., Ariyoshi, H., Electron. Lett., 14, 593 (1978)Google Scholar
4. Ishigami, S., Kawaj, Y., Furuta, H. and Shingyouj, T., Jpn. J. Appl. Phys. 32 4408 (1993)Google Scholar
5. Mayo, S., Suehle, J. S., and Roitman, P., J. Appl. Phys. 74 4113 (1993)Google Scholar
6. Mitani, K., Lehmann, V., Stengl, R., Feijoo, D., Gösele, U. M. and Massoud, H. Z., Jpn. J. Appl. Phys. 30 615 (1991)Google Scholar
7. Maby, E. W., Geis, M. W., Lecoz, Y. L., Silversmith, D. J., Moutain, R. W. and Antoniadis, D. A., IEEE Electron Device Lett. EDL–2, 241 (1981)Google Scholar
8. Usami, A., Natori, T., Ito, A., Ishigamt, S., Tokuda, Y. and Wada, T., Mat. Res. Soc. Symp. Proc., 262, 349 (1992)Google Scholar
9. Usami, A., Kaneko, K., Ito, A., Ishigami, S. and Wada, T., Mat. Res. Soc. Symp. Proc, 302, 567 (1993)Google Scholar
10. Usami, A., Ichtmura, M., Wada, T. and Ishigami, S., J. Appl. phys. (in press)Google Scholar
11. Usami, A., Jintate, S. and Kudo, B., Oyó Buturi 49 1192 (1980) (in Japanese)Google Scholar
12. Usami, A. and Kushida, T., Oyó Buturi 50 607 (1981) (in Japanese)Google Scholar
13. Usami, A., Yamada, N., Matsuki, K., Takeuchi, T., and Ada, T. W., Mat. Res. Soc. Symp. Proc, 146, 359 (1989)Google Scholar
14. Usami, A., Yamada, N., Matsuki, K., Takeuchi, T. and Wada, T., J. Cryst. Growth, 103, 179 (1990)Google Scholar
15. Usami, A., Fujiwara, H., Yamada, N., Matsuki, K., Takeuchi, T. and Wada, T., IEICE Trans. Electron., E75–C, 595 (1992)Google Scholar
16. Usami, A., Fujiwara, H., Nakai, T., Matsuki, K., Takeushj, T. and Wada, T., Mat. Res. Soc. Symp. Proc, 259, 261 (1992)Google Scholar
17. Usami, A., Fujiwara, H., Nakai, T., Matsuki, K., Takeuchi, T. and Wada, T., IEICE Trans. Electron., E75–C, 978 (1992)Google Scholar
18. Usami, A., Shiraki, H., Fujiwara, H., Abe, R., Osamura, N., Ichimura, M. and Wada, T., Mat. Res. Soc. Symp. Proc, 224, 215 (1991)Google Scholar
19. Usami, A., Proc. IEEE Int. Conference on Microelectronic Test Structures, 4, 1 (1991)Google Scholar
20. Oda, M., Usamt, A., Nakat, T., Ito, A., Ichimura, M. and Wada, T., Mat. Res. Soc. Symp. Proc, 306, 91 (1993)Google Scholar
21. Ito, A., Usami, A. and Wada, T., J. Appl. Phys. 71, 4088 (1992)Google Scholar
22. Shiraki, H., Ito, A., Usami, A., Ichimura, M., and Wada, T., Mat. Res. Soc. Symp. Proc, 315, 169 (1993)Google Scholar
23. Usami, A., Ito, A., Tokuda, Y., Kano, H. and Wada, T., J. Cryst. Growth, 103, 350 (1990)Google Scholar
24. Usami, A., Nakai, T., Fujiwara, H., Ishigami, S. and Wada, T., IEICE Trans. Electron., E75–C, 1043 (1992)Google Scholar
25. Usami, A., Nakai, T., Ishigami, S., Wada, T., Matsuki, K. and Takeuchi, T., Mat. Res. Soc Symp. Proc, 302, 585 (1993)Google Scholar
26. Wolf, H. F., SILICON SEMICONDUCTOR DATA, PERGAMON PRESS (1969)Google Scholar