Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:59:16.889Z Has data issue: false hasContentIssue false

Evaluation of Solubility and Speciation of Actinides in Natural Groundwaters

Published online by Cambridge University Press:  15 February 2011

Marc R. Schweingruber*
Affiliation:
Swiss Federal Institute for Reactor Research, CH-5303.Würenlingen, Switzerland
Get access

Extract

Groundwater circulation is in the long term probably the most important mechanism for the transport of radionuclides from deep underground repositories to the biosphere. The fate of leached long-lived nuclides, such as the actinides, is of particular interest to repository safety analysis. Both experimental and theoretical studies should lead to a comprehensive description of their behaviour in the geosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

l. Skytte Jensen, B. (1980) The Geochemistry of Radionuclides with long Half- Lives - Their Expected Migration Behaviour. Report of Risø Nat. Lab. to ELSAM/ELKRAFT.Google Scholar
2. Allard, B., Kipatsi, H., Liljenzin, J.O. (1980) J. Inorg. Nucl., 42, 1015.CrossRefGoogle Scholar
3. Goodwin, B.W. (1980) Maximum Uranium Solubility Under Conditions Expected in a Nuclear Waste Vault. Atomic Energy of Canada Report TR-29.Google Scholar
4. Rai, D., Serne, J. (1978) Solid Phases and Solution Species of Different Elements in Geologic Environments. PNL-2651/UC-70, Pacific Northwest Lab.CrossRefGoogle Scholar
5. Wolery, T.J. (1980) Chemical Modeling of Geologic Disposal of Nuclear Waste: Progress Report and a Perspective. UCRL-52748, Lawrence Livermore Lab.Google Scholar
6. Westall, J.C., Zachary, J.L., Morel, F.M.M. (1976) MINEQL - A Computer Program for the Calculation of Chemical Equilibrium Compositions of Aqueous Systems. MIT Technical Note 18.Google Scholar
7. Smith, R.M., Martell, A.E. (1976) Critical Stability Constants. Plenum Press New York.CrossRefGoogle Scholar
8. Langmuir, D. (1978) Geochim. Cosmochimica Acta, 42, 547.CrossRefGoogle Scholar
9. Lemire, R.J., Tremaine, P.R. (1980) J. Chem. Eng. Data, 25, 361.CrossRefGoogle Scholar
10. Langmuir, D., Herman, J.S. (1980) Geochem. Cosmochimica Acta, 44, 1753.CrossRefGoogle Scholar
ll. Allard, B., Kipatsi, H., Rydberg, J. (1977) Sorption av langlivade radionuklider i lera och berg. KBS Teknisk Rapport 55, Stockholm.Google Scholar
12. Stumm, W., Morgan, J.J. (1970) Aquatic Chemistry. Wiley-Interscience, New York.Google Scholar
13. Schweingruber, M. (1981) Löslichkeits- und Speziationsberechnungen für U, Pu, Np und Th in natürlichen Grundwässern. EIR-Report No. 449/NAGRA Technical Report NTB-81–13, Würenlingen/Baden (Switzerland).Google Scholar
14. Keller, C. (1963) Nukleonik, 5, 41.Google Scholar
15. Högl, O. (1980) Die Mineral- und Heilquellen der Schweiz. Paul Haupt, Bern.Google Scholar
16. Baertschi, P. (1981) personal communication.Google Scholar
17. Baertschi, P., Keil, R. (1980) EIR internal report TM-44–80–12, Wüirenlingen, Switzerland.Google Scholar