Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T13:16:15.023Z Has data issue: false hasContentIssue false

Evaluation of Dislocation Mobility in Wurtzite Semiconductors

Published online by Cambridge University Press:  04 February 2015

Ichiro Yonenaga*
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Get access

Abstract

The indentation hardness and yield strength of various wurtzite-structured semiconductors, such as AlN, GaN, InN, and ZnO, were summarized together with those of 6H-SiC. From analysis of the data, the activation energy for motion of an individual dislocation was deduced to be 2–2.7 and 0.7–1.2 eV in GaN and ZnO, respectively, and the evaluated activation energy for dislocation motion showed a dependence on the dislocation energy in the minimum length. The results were evaluated in terms of homology and the basic mechanism of the dislocation process. Dislocation motion is thought to be primarily controlled by the atomic bonding character of the semiconductors.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yonenaga, I., Sumino, K., Phys. Stat. Sol. (a) 50, 685 (1978).CrossRefGoogle Scholar
Yonenaga, I., J. Phys. III 7, 1435 (1987).Google Scholar
Yonenaga, I., Mater. Trans. 46, 1979 (2005).CrossRefGoogle Scholar
Phillips, J. C., Bonds and Bands in Semiconductors (Academic Press, New York, 1973).Google Scholar
Takeuchi, S. and Suzuki, K., Philos. Mag. Lett. 79, 423 (1999).Google Scholar
Yonenaga, I., Hoshi, T. and Usui, A., Jpn J. Appl. Phys. 39, L200 (2000).CrossRefGoogle Scholar
Yonenaga, I., Nikolaev, A., Melnik, Y. and Dmitriev, V., Jpn J. Appl. Phys. 40, L426 (2001).CrossRefGoogle Scholar
Yonenaga, I., Physica B 308310, 1150 (2001).CrossRefGoogle Scholar
Koizumi, H., Ohno, Y., Taishi, T. and Yonenaga, I., unpublished work.Google Scholar
Yonenaga, I., Ohkubo, Y., Deura, M., Kutsukake, K., Tokumoto, Y., Ohno, Y., Yoshikawa, A. and Wang, X-Q., unpublished work.Google Scholar
, H. Kirchner, O. K. and Suzuki, T., Acta Mater. 46, 305 (1998).CrossRefGoogle Scholar
Yonenaga, I. and Suzuki, T., Philos. Mag. Lett. 82, 535 (2002).CrossRefGoogle Scholar
Hong, M. H., Pirouz, P., Tavernier, P. M. and Clarke, D. R., Mater. Sci. Soc. Symp. 622, T6.18 (2000).Google Scholar
Yonenaga, I. and Motoki, K., J. Appl. Phys. 90, 6539 (2001).CrossRefGoogle Scholar
Yonenaga, I., Koizumi, H., Ohno, Y. and Taishi, T., J. Appl. Phys. 103, 093502 (2008).CrossRefGoogle Scholar
Sammnt, A. V., Zhou, W. L. and Pirouz, P., Phys. Stat. Sol. (a) 166, 155 (1998).3.0.CO;2-V>CrossRefGoogle Scholar
Fujita, S., Maeda, K. and Hyodo, S., Philos. Mag. A 55, 203 (1987).CrossRefGoogle Scholar
Yonenaga, I., Ohno, Y., Taishi, T. and Tokumoto, Y., Physica B 404, 4999 (2009).CrossRefGoogle Scholar
Yonenaga, I., J. Appl. Phys. 84, 4209 (1998).CrossRefGoogle Scholar
Weingarten, N. S. and Chung, P. W., Scripta Mater. 69, 311 (2013).CrossRefGoogle Scholar