Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:16:13.139Z Has data issue: false hasContentIssue false

Eu-Doped Silica Nanotubes: Synthesis and Optical Properties

Published online by Cambridge University Press:  01 February 2011

Catherine Murphy
Affiliation:
[email protected], University of South Carolina, Chemistry and Biochemistry, 631 Sumter St., Columbia, SC, 29208, United States, 803-777-3628, 803-777-9521
Simona E. Hunyadi
Affiliation:
[email protected], University of South Carolina, Chemistry and Biochemistry, 631 Sumter St., Columbia, SC, 29208, United States
Get access

Abstract

Silver nanowires were coated with a silica shell through an indirect approach. Incorporation of the fluorescent ion Eu(III) into the silica shell in situ was achieved. Subsequent chemical dissolution of the inner metal core resulted in fluorescent silica nanotubes. Transmission electron microscopy (TEM), electron dispersive X-ray microanalysis (EDAX), fluorescence spectroscopy, and zeta potential measurements were used to characterize the materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bruchez, M. P., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A. P., Science 281, 2013 (1998).Google Scholar
2. Santra, S., Zhang, P., Wang, K. M., Tapec, R. and Tan, W. H., Anal. Chem. 73, 4988 (2001).Google Scholar
3. Liane, M. R., Lifang, S., Quina, F. H., and Rosenzweig, Z., Langmuir 21, 4277 (2005).Google Scholar
4. Zhao, X., Tapec-Dytioco, R., and Tan, W., J. Am. Chem. Soc. 125, 11474 (2003).Google Scholar
5. Eijkel, J.C.T. and Berg, A. van den, Microfluidics and Nanofluidics 1, 249 (2005).Google Scholar
6. Patwardhan, S.V. and Clarson, S.J., J. Inorg. & Organomet. Polymers 12, 109 (2002) S. F. Richardson, Chem. Rev. 82, 541 (1982).Google Scholar
7. Strek, W., Sokolnicki, J., Legendziewicz, J., Maruszeski, K., Reisfeld, R., Pavich, T. Optical Materials, 13, 41 (1999).Google Scholar
8. You, H. and Nogami, M., J. Phys. Chem. B 108, 12003 (2004).Google Scholar
9. Selvan, S.T., Hayakawa, T. and Nogami, M., J. Phys. Chem. B 103, 7064 (1999).Google Scholar
10. Tan, M., Ye, Z., Wang, G., and Yuan, J., Chem. Mater, 16, 2494 (2004).Google Scholar
11. Yuan, J. and Wang, G. Journal of Fluorescence 15, 559 (2005).Google Scholar
12. Ye, Z.Q., Tan, M.Q., Wang, G.L. and Yuan, J.L. J. Mater. Chem.14, 851 (2004).Google Scholar
13. Caswell, K. K., Bender, C. M. and Murphy, C. J., Nano Lett. 3 667 (2003).Google Scholar
14. Hunyadi, S.E. and Murphy, C.J., J. Phys. Chem. B 110, 7226 (2006).Google Scholar
15. Ananias, D., Ferreira, A., Rocha, J., Ferreira, P., Rainho, J.P., Morais, C., and Carlos, L.D., J. Am. Chem. Soc. 123, 5735 (2001).Google Scholar
16. Guodong, Q., Minquan, W. and Mang, W. J., Photochem. and Photobiol. A:Chem. 107, 121 (1997).Google Scholar
17.(a) Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E. and Li, T., J. Phys. Chem. B, 109, 13857 (2005). (b) A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, Phys. Chem. B 107 8829 (2003). (c) J. R. Lakowicz, Y. Shen, S. D'Auria, J. Malicka, J. Fang, Z. Gryczynski and I. Gryczynski, Anal. Biochem., 301, 261 (2002).Google Scholar