Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:30:25.600Z Has data issue: false hasContentIssue false

Etching Reactions at Solid Surfaces

Published online by Cambridge University Press:  21 February 2011

Harold F. Winters
Affiliation:
IBM Research Laboratory, San Jose, California 95193
J. W. Coburn
Affiliation:
IBM Research Laboratory, San Jose, California 95193
Get access

Abstract

An understanding of etching reactions in a plasma environment requires a knowledge of: (1) the types of gas phase particles which react at the surface, (2) the etch products formed, and (3) the processes which lead from reactants to products. Experimental data relavant to these topics are reviewed in this paper. A conceptual framework for understanding the etching reaction is reviewed and it is shown that the experimental data presently available is consistent with this framework. The influence of ion bombardment on etching reactions is extensively discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Coburn, J. W. and Winters, H. F., J. Vac. Sci. Technol. 16, 391 (1979).Google Scholar
2. Coburn, J. W. and Winters, H. F., Ann. Rev. Mater. Sci. 13, 91 (1983).CrossRefGoogle Scholar
3. Winters, H. F., Coburn, J. W., and Chuang, T. J., J Vac. Sci. Technol. B1, 469 (1983).CrossRefGoogle Scholar
4. Flamm, D. L. and Donnelly, V. M., Plasma Chem. Plasma Process. 1, 317 (1981).Google Scholar
5. Mucha, J. A. and Hess, D. W., in “Introduction to MicrolithographyThompson, L. F., Wilson, C. G., and Bowden, M. J., eds., ACS Symposium Series, p. 215 (1983).Google Scholar
6. For a detailed description of the experimental apparatus presently used see Harold Winters, F., J, Vac. Sci. B to be published.Google Scholar
7. Winters, H. F., J. Appl. Phys. 49, 5165 (1978).Google Scholar
8. Winters, H. F. and Houle, F. A., J. Appl. Phys. 54, 1218 (1983).Google Scholar
9. Winters, H. F., J. Vac. Sci. Technol. B1, 927 (1983).Google Scholar
10. Vasile, M. J., J. Appl. Phys. 54, 6697 (1983).Google Scholar
11. Vasile, M. J. and Stevie, F. A., J. Appl. Phys. 53, 3799 (1982).Google Scholar
12. Haring, R. A., Kolfschoten, A. W. and de Vries, A. E., Nucl. lnstru. Meth. B2, 544 (1984).CrossRefGoogle Scholar
13. Kolfschoten, A. W., Haring, R. A., Haring, A., and de Vries, A. E., J Appl. Phys. 55, 3813 (1984).Google Scholar
14. Mott, N. F., Trans. Faraday Soc. 43, 429 (1940).Google Scholar
15. Fehner, F. P. and Mott, N. F., J. Oxidation of Metals 2, 59 (1970).CrossRefGoogle Scholar
16. Mott, N. F., Trans. Faraday Soc. 43, 429 (1940).Google Scholar
17. Cabrera, N. and Mott, N. F., Rep. Prog. Phys. 12, 163 (1949).Google Scholar
18. Saunders, S. R. J., Sci. Prog Oxf. 63, 163 (1976).Google Scholar
19. Vermilyea, D. A., in Advances in Electrochemistry and Electrochemical Engineering, edited by Delahey, Paul (Interscience Publishers, New York, 1963), p. 249.Google Scholar
20. O'Hanlon, J. F., J. Vac. Sci. Technol. 7, 330 (1970).Google Scholar
21. Dearnaley, G., Nuclear Instr. and Meth. 182–183, 899 (1981).CrossRefGoogle Scholar
22. Tu, Y. Y., Chuang, T. I., and Winters, H. F., Phys. Rev. B23, 823 (1981).Google Scholar
23. Wach, W. and Wittmaack, K., J. Appl. Phys. 52, 3341 (1981).CrossRefGoogle Scholar
24. Reuter, W. and Wittmaack, K., Appl Surf. Sci. 5, 221 (1980).Google Scholar
25. Miranda, R., Rojo, J. M., and Salmeron, M., Sol. St. Comm. 35, 83 (1980).Google Scholar
26. Pivin, J. C., Rogues-Carmes, C., and Slodzian, G., Int. J. Mass. Spec. and Ion Phys. 31, 293 (1979).Google Scholar
27. Schmidt, L. D., in “Aspects of the Kinetics and Dynamics of Surface Reactions,” AIP Conference Proceedings No. 61, edited by Landman, Uzi (American institute of Physics, New York, 1980), p. 57.Google Scholar
28. Madix, R. J., in “Aspects of the Kinetics and Dynamics of Surface Reactions,” AIP Conference Proceedings No. 61, edited by Landman, Uzi (American institute of Physics, New York, 1980), p. 57.Google Scholar
29. Kohrt, C. and Gomer, R., J. Chem. Phys. 52, 3283 (1970).Google Scholar
30. King, D. A. and Wells, M. G., Proc. Roy. Soc. Ser. A339, 245 (1974).Google Scholar
31. Tamm, P. W. and Schmidt, L. D., J. Chem. Phys. 52, 1150 (1970).Google Scholar
32. Engel, T. and Ertl, G., Adv. Catal. 28, 1 (1979).Google Scholar
33. Adams, J. E. and Doll, J. D., Surf. Sci. 103, 472 (1981).Google Scholar
34. Chen, M., Minkiewicz, V. J., and Lee, K., J. Electrochem. Soc. 126, 1946 (1979).Google Scholar
35. Flamm, D. L., Donnelly, V. M., and Mucha, J. A., J. Appl Phys. 52, 3633 (1981).Google Scholar
36. Coburn, J. W. and Winters, H. F., J. Appl. Phys. 50, 3189 (1979).Google Scholar
37. Tu, Y.-Y., Chuang, T. J. and Winters, H. F., Phys. Rev. B23, 823 (1981).CrossRefGoogle Scholar
38. Gerlach-Meyer, U., Coburn, J. W. and Kay, E., Surf. Sci. 103, 177 (1981).Google Scholar
39. Winters, H. F., to be published.Google Scholar
40. Smith, D. L. and Bruce, R. H., J. Electrochem. Soc. 129, 2045 (1982).Google Scholar
41. Smith, D. L. and Saviano, P. G., J. Vac. Sci. Technol. 21, 768 (1982).Google Scholar
42. Knabbe, E.-A., Coburn, J. W. and Kay, E., Surf. Sci. 123, 427 (1982).Google Scholar
43. Coburn, J. W., in “Applications of Piezoelectric Quartz Crystal Microbalances,” Lu, C. and Czanderna, A. W., editors, Elsevier, Amsterdam (1984), p. 221.Google Scholar
44. Winters, H. F., J. Appl. Phys. 49, 5165 (1978).Google Scholar
45. Chuang, T. J., J. Appl. Phys. 51, 2614 (1980).Google Scholar
46. Norar, I. F., McFeely, F. R., Shinn, N. D., Landgren, G. and Himpsel, F. I., Appl Phys.Lett. 45, 174 (1984).Google Scholar
47. Loudiana, M. A., Schmid, A., Dickinson, J. T. and Ashley, E. J., to be published.Google Scholar
48. Mauer, J. L., Logan, J. S., Zielinski, L. B. and Schwartz, G. C., J. Vac. Sci. Technol. 15, 1734 (1978).Google Scholar
49. Mayer, T. M. and Barker, R. A., J Vac. Sci. Technol. 21, 757 (1982).Google Scholar
50. Haring, R. A., Haring, A., Saris, F. W. and deVries, A. E., Appl. Phys. Letn. 41, 174 (1982).Google Scholar
51. Perry, D. L. and Margrave, J. L., J. Chem. Educ. 53, 696 (1976).Google Scholar
52. Barker, R. A., Mayer, T. M. and Pearson, W. C., J. Vac. Sci. Technol. B1, 37 (1983).Google Scholar
53. Winters, H. F., to be published.Google Scholar
54. Sanders, F. H. M., Kolfschoten, A. W., Dieleman, J., Haring, R. A., Haring, A. and deVries, A. E., J. Vac. Sci. Technol. A 2, 487 (1984).Google Scholar
55. Dieleman, J. and Sanders, F. H. M., Solid State Technol. 27(4), 191 (1984).Google Scholar
56. Erents, S. K. and McCracken, G. M., J. Appl. Phys. 44, 3139 (1973).CrossRefGoogle Scholar
57. Okano, H. and Horiike, Y., Jpn. J Appl. Phys. 20, 2429 (1981).Google Scholar
58. McFeely, F. R., private communication.Google Scholar
59. Sanders, F. H. M., private communication.Google Scholar
60. Donnelly, V. M. and Flamm, D. L., Solid State Technol. 24(4), 161 (1981).Google Scholar