Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:20:20.125Z Has data issue: false hasContentIssue false

Estimates of Impact Ionization Coefficients in Superlattice-Based Mid-Wavelength Infrared Avalanche Photodiodes

Published online by Cambridge University Press:  01 February 2011

C. H. Grein
Affiliation:
Microphysics Laboratory and Department of Physics, University of Illinois at Chicago, Chicago, IL 60607–7059
K. Abu El-Rub
Affiliation:
Microphysics Laboratory and Department of Physics, University of Illinois at Chicago, Chicago, IL 60607–7059 Department of Physics, Jordan University of Science & Technology, Irbid-Jordan
M. E. Flatté
Affiliation:
Optical Science and Technology Center and Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242
H. Ehrenreich
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
Get access

Abstract

We describe band engineering strategies to either enhance or suppress electron-initiated impact ionization relative to hole-initiated impact ionization in type II superlattice mid-wavelength infrared avalanche photodiodes. The strategy to enhance electron-initiated impact ionization involves placing a high density of states at approximately one energy gap above the bottom of the conduction band and simultaneously removing valence band states from the vicinity of one energy gap below the top of the valence band. This gives the electrons a low threshold energy and the holes a high one. The opposite strategy enhances hole-initiated impact ionization. Estimates of the electron (α) and hole (β) impact ionization coefficients predict that α/β>>1 in the first type of superlattice and α/β<<1 in the second type.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Olesberg, J. T. and Flatté, M. E., to be published.Google Scholar
[2] Madelung, O. in Semiconductors, Group IV Elements and III-V Compounds, edited by Helluege, K.H and Madelung, O., Landold-Bornstein, New Series, Group III, Vol. 17, Pt. A (SpringerVerlag, Berlin, 1982).Google Scholar
[3] Olesberg, J.T., Anson, S.A., McCahon, S.W., Flatté, M.E., Boggess, T.F., Chow, D.H., and Hasenberg, T.C., Appl. Phys. Lett. 72, 229 (1998).Google Scholar
[4] Grein, C.H., Young, P.M., Flatté, M.E., and Ehrenreich, H., J. Appl. Phys. 78, 7143 (1995);Google Scholar
Flatté, M.E., Grein, C.H., Hasenberg, T.C., Anson, S.A., Jang, D.-J., Olesberg, J.T., and Boggess, T., Phys. Rev. B. 59, 5745 (1999).Google Scholar
[5] Beattie, A.R. and Landsberg, P.T., Proc. R. Soc. Lond. Ser. A 249, 16 (1959).Google Scholar
[6] Sugimura, A., J. Appl. Phys. 51, 4405 (1980).Google Scholar
[7] Antoncik, E. and Landsberg, P.T., Proc. Phys. Soc. 82, 337 (1963).Google Scholar
[8] Sugimura, A., J. Appl. Phys. 51, 4405 (1980).Google Scholar
[9] Numerical Recipes 2nd edition by Press, W.H., Teukolsky, S.A., Vetterling, W., and Flannery, B. (Cambridge University Press, Cambridge, 1992).Google Scholar
[10] Baraff, G.A., Phys. Rev. 128, 2507 (1962).Google Scholar
[11] Brennan, K., Hess, K., and Chang, Y.-C., J. Appl. Phys. 57, 1971 (1985).Google Scholar
[12] Rmou, A., Luquet, H., Gouskov, L., Perotin, M., and Coudray, P., Jpn. J. Appl. Phys. 33, 4657 (1994).Google Scholar
[13] Jacoboni, C. and Reggiani, L., Rev. Mod. Phys. 55, 645 (1983).Google Scholar