Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:38:30.492Z Has data issue: false hasContentIssue false

ESR Anisotropy of Organic Semiconductor Molecules: Calculation and Experiment

Published online by Cambridge University Press:  02 August 2012

Hiroyuki Matsui
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan
Daisuke Kumaki
Affiliation:
Research Center for Organic Electronics (ROEL), Yamagata University, Yonezawa 992-8510, Japan
Eiji Takahashi
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan Sumika Chemical Analysis Service (SCAS), Ltd., Osaka 541-0043, Japan
Kazuo Takimiya
Affiliation:
Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
Mitsuhiro Ikawa
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan
Shizuo Tokito
Affiliation:
Research Center for Organic Electronics (ROEL), Yamagata University, Yonezawa 992-8510, Japan
Tatsuo Hasegawa
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan
Get access

Abstract

We investigated the anisotropic g tensors of nine kinds of organic semiconductor molecules in the cationic state by density functional theory (DFT) calculations. Large anisotropy was obtained in sulfur-containing molecules because of the large spin-orbit coupling at the sulfur atoms. The calculated g values were validated by electron spin resonance (ESR) experiments for the cation radicals in solution.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Marumoto, K. et al. ., J. Phys. Soc. Jpn. 74, 3066 (2005).Google Scholar
2. Marumoto, K. et al. ., Phys. Rev. Lett. 97, 256603 (2006).Google Scholar
3. Matsui, H. et al. ., Phys. Rev. Lett. 100, 126601 (2008).Google Scholar
4. Marumoto, K. et al. ., Phys. Rev. B 83, 075302 (2011).Google Scholar
5. Matsui, H. et al. ., Phys. Rev. B 85, 035308 (2012).Google Scholar
6. Matsui, H., Mishchenko, A. S., and Hasegawa, T., Phys. Rev. Lett. 104, 056602 (2010).Google Scholar
7. Mishchenko, A. S., Matsui, H., and Hasegawa, T., Phys. Rev. B 85, 085211 (2012).Google Scholar
8. Weil, J. A., Bolton, J. R., and Wertz, J. E., Electron Paramagnetic Resonance: Elementary Theory and Practical Applications (Wiley-Interscience, New York 1994).Google Scholar
9. Mcculloch, I. et al. ., Nat. Mater. 5, 328 (2006).Google Scholar
10. Ebata, H. et al. ., J. Am. Chem. Soc. 129, 15732 (2007).Google Scholar
11. Yamamoto, T. and Takimiya, K., J. Am. Chem. Soc. 129, 2224 (2007).Google Scholar
12. Yamada, T. et al. ., Appl. Phys. Lett. 92, 233306 (2008).Google Scholar
13. Takahashi, Y. et al. ., Chem. Mater. 19, 6382 (2007).Google Scholar
14. Frisch, M. J. et al. ., Gaussian 03, Revision E.01 (Gaussian, Inc., Wallingford, CT, 2004).Google Scholar