Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T08:58:49.209Z Has data issue: false hasContentIssue false

Erosion of Magnesium Potassium Phosphate Ceramic Waste Forms

Published online by Cambridge University Press:  10 February 2011

K. C. Goretta
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439–4838
D. Singh
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439–4838
M. Tlustochowicz
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439–4838
M. M. Cuber
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439–4838
M. L. Burdt
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439–4838
S. Y. Jeong
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439–4838
T. L. Smith
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439–4838
A. S. Wagh
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439–4838
J. L. Routbort
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439–4838
Get access

Abstract

Phosphate-based chemically bonded ceramics were formed from magnesium potassium phosphate (MKP) binder and either industrial fly ash or steel slag. The resulting ceramics were subjected to solid-particle erosion by a stream of either angular Al2O3 particles or rounded SiO2 sand. Particle impact angles were 30 or 90° and the impact velocity was 50 m/s. Steady-state erosion rates, measured as mass lost from a specimen per mass of impacting particle, were dependent on impact angle and on erodent particle size and shape. Material was lost by a combination of fracture mechanisms. Evolution of H2O from the MKP phase appeared to contribute significantly to the material loss.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lamarre, L., Elect. Pow. Res. Inst. J., 1994, April/May, 22.Google Scholar
2. Singh, D., Wagh, A. S., Cunnane, J. C., and Mayberry, J. L., J. Environ. Sci. Health A32, 527 (1997).Google Scholar
3. Singh, D. and Wagh, A. S., Mater. Technol. 12, 149 (1997).Google Scholar
4. Wagh, A. S., Jeong, S. Y., and Singh, D., Ceram. Trans. 87, 63 (1998).Google Scholar
5. Singh, D., Mandalika, V., Wagh, A. S., Strain, R. V., and Tlustochowicz, M., Ceram. Trans. 87, 653 (1998).Google Scholar
6. Wagh, A. S. and Singh, D., Radwaste Mag., 1998, January, 46.Google Scholar
7. Closing the Circle on the Splitting of the Atom, U.S. Department of Energy, Office of Environmental Management, Washington, DC, 1995.Google Scholar
8. Goretta, K. C., Burdt, M. L., Cuber, M. M., Perry, L. A., Singh, D., Wagh, A. S., Routbort, J. L., and Weber, W. J., Wear, in press (1999).Google Scholar
9. Routbort, J. L. and Scattergood, R. O., Key Eng. Mater. 71, 23 (1992).Google Scholar
10. Tilly, G. P. and Sage, W., Wear 16, 447 (1970).Google Scholar
11. Evans, A. G., Gulden, M. E., and Rosenblatt, M., Proc. R. Soc. London Ser. A 361, 343 (1978).Google Scholar
12. Ruff, A. W. and Wiederhom, S. M., in Treatise on Materials Science and Technology, Vol.16, edited by Preece, C. M. (Academic Press, New York, 1979), p. 69.Google Scholar
13. Sundararajan, G., Wear 84, 217 (1983).Google Scholar
14. Preece, C. M. and MacMillan, N. H., Ann. Rev. Mater. Sci. 7, 95 (1977).Google Scholar
15. U.S. Environmental Protection Agency, Method 1311, Toxicity Characteristic Leaching Procedure (TCLP), Rev. 11 (1992), p. 138.Google Scholar
16. Method ANSI/ANS 16.1, American Nuclear Society, La Grange Park, IL (1986).Google Scholar
17. Routbort, J. L. and Scattergood, R. O., J. Am. Ceram. Soc. 63, 595 (1980).Google Scholar
18. Goretta, K. C., Routbort, J. L., Mayer, A., and Schwarz, R. B., J. Mater. Res. 2, 818 (1987).Google Scholar
19. Yust, C. S. and Crouse, R. S., Wear 51, 193 (1978).Google Scholar
20. Jeong, S. Y., Ph.D. thesis, Illinois Institute of Technology, 1997.Google Scholar
21. Levy, A. V., Shui, Z. R., and Wang, B. Q., Wear 127, 193 (1988).Google Scholar
22. Brandstädter, A., Goretta, K. C., Routbort, J. L., Groppi, D. P., and Karasek, K. R., Wear 147, 155 (1991).Google Scholar
23. Wu, W., Goretta, K. C., and Routbort, J. L., Mater. Sci. Eng. A151, 85 (1992).Google Scholar
24. See, for example, “Ceramic Source, Vol.6,” Am. Ceram. Soc., Westerville, OH (1991).Google Scholar
25. Tlustochowicz, M., M.S. thesis, Northwestern University, 1998.Google Scholar
26. Goretta, K. C., Jeong, S. Y., Jiang, M., Routbort, J. L., Singh, D., and Wagh, A. S., in Wear of Engineering Materials, edited by Hawk, J. A. (ASM Int., Materials Park, OH, 1998), p. 121.Google Scholar