Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:37:05.515Z Has data issue: false hasContentIssue false

Erbium in Semiconductors: Where are we coming from; Where are we going?

Published online by Cambridge University Press:  01 February 2011

A. R. Peaker*
Affiliation:
The University of Manchester, School of Electrical & Electronic Engineering, Manchester, M60 1QD, UK.
Get access

Abstract

It is one of the curious twists of technology that transitions which are parity forbidden in the free ions of rare earths should have become of immense importance in solids used in fluorescent lighting, cathode ray tubes and optical amplifiers. It is not an unreasonable expectation that having achieved such success with excitation from photons and accelerated electrons that junction electroluminescence should also be important. Since Ennen demonstrated good low temperature electroluminescence in silicon in the early 80's, a formidable amount of work has been done to try to understand the excitation and quenching mechanisms in common semiconductor hosts such as silicon and gallium arsenide. Although some remarkable experimental results have been obtained for erbium in nanostructures, insulators and wide bandgap materials the performance in bulk silicon and silicon germanium is disappointing. More importantly we still have not achieved a comprehensive, detailed understanding of the processes of non-radiative competition to the rare earth emission. In this paper the key steps that have been made over the last twenty years towards our present day knowledge of erbium luminescence in semiconducting hosts are reviewed and an assessment made of what remains to be done.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.The Holy Grail was, according to legend, the cup used by Christ at the last supper and in which Joseph of Arimathea received Christ's blood at the Cross. In medieval times the search for this cup was the object of long and heroic quests by an international community of knights many of whom devoted their lives to the task.Google Scholar
2. Bell, R.L., J. Appl. Phys. 34, 1563 (1963)Google Scholar
3. Gibbons, J.F., Moll, J.L. and Meyer, N.I., Nuclear Instruments and Methods, 38, 165 (1965)Google Scholar
4. Casey, H.C. Jr . and Pearson, G.L., J. Appl. Phys., 35, 3401 (1964)Google Scholar
5.eg Kasatkin, V.A., Kesamanly, F.P., Masterov, V.F., Romanov, V.V. and Samorukov, B.E., Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 16, 1901 (1980)Google Scholar
6. Ennen, H., Schneider, J., Pomrenke, G. and Axmann, A., Appl. Phys. Lett., 43, 943 (1983)Google Scholar
7. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W. and Schneider, J., Appl Phys Lett, 46, 381 (1985)Google Scholar
8. Tsang, W.T. and Logan, R.A., Appl. Phys. Lett., 49, 1686 (1986)Google Scholar
9. Favennec, P.N., L'Haridon, H., Salvi, M., Moutonnet, D. and Guillou, Y. Le, Electron. Lett. 25, 718 (1989)Google Scholar
10. Efeoglu, H., Evans, J.H., Jackman, T.E., Hamilton, B., Houghton, D.C., Langer, J.M., Peaker, A.R., Perovic, D., Poole, I., Ravel, N., Hemment, P. and Chan, C.W., Semicond. Sci. & Technol. 8, 236 (1993)Google Scholar
11. Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L. C., Phys. Rev. B, 58, 17603 (1996)Google Scholar
12. Hangleiter, A., Phys. Rev. B., 37, 2594 (1988)Google Scholar
13. Taguchi, A., Takahei, K., and Horikoshi, Y., J. Appl. Phys., 76, 7288 (1994)Google Scholar
14. Tsimperidis, I., Gregorkiewicz, T., Ammerlaan, C. A. J., Godlewski, M., Scholz, F. and Lambert, B. J. Appl. Phys., 77, 1523 (1995)Google Scholar
15. Yassievich, I.N. and Kimerling, L.C., Semicond. Sci. and Technol. 8, 718 (1993)Google Scholar
16. Priolo, F., Franzò, G., Coffa, S. and Carnera, A., Phys. Rev. B, 57, 4443 (1998)Google Scholar
17. Libertino, S., Coffa, S., Franzo, G. and Priolo, F., J. Appl. Phys. 78, 3867 (1995)Google Scholar
18. Forcales, M., Gregorkiewicz, T. and Bresler, M. S. Phys. Rev. B, 68, 035213 (2003) and I. Tsimperidis, T. Gregorkiewicz, H. H. P. Th. Bekman, C. J. G. M. Langerak, Phys. Rev. Lett., 81, 4748 (1998)Google Scholar
19. Moskalenko, A. S., Yassievich, I. N., Forcales, M., Klik, M., and Gregorkiewicz, T., Phys. Rev. B, 70, 155201 (2004)Google Scholar
20. Coffa, S., Franzo, G. and Priolo, F., Appl. Phys. Lett. 69, 2077 (1996)Google Scholar
21. Wan, J., Ling, Y., Sun, Q. and Wang, X., Phys. Rev. B, 58, 10415 (1998)Google Scholar
22. Priolo, F., Franzo, G., Coffa, S. and Carnera, A., Phys. Rev. B, 57, 4443 (1998)Google Scholar
23. Matsuoka, M. and Tohno, S., Appl. Phys. Lett. 71, 96 (1997)Google Scholar
24. Coffa, S., Franzo, G., Priolo, F., Pacelli, A. and Lacaita, A., Appl. Phys. Lett., 73, 93 (1998)Google Scholar
25. Polman, A., Custer, J. S., Snoeks, E., and Hoven, G. N. van den Appl. Phys. Lett., 62, 507 (1993)Google Scholar
26. Huda, M. Q., Evans-Freeman, J. H., Peaker, A. R., Houghton, D. C. and Nejim, A., J. Vac. Sci. Technol. B, 16, 2928 (1998)Google Scholar
27. Singer, K. E., Rutter, P., Peaker, A. R. and Wright, A. C. Appl. Phys. Lett. 64, 707 (1994)Google Scholar
28. Tang, Y. S., Jingping, Z., Heasman, K. C., and Sealy, B. J., Solid State Commun. 72, 991 (1989).Google Scholar
29. Kozanecki, A., Wilson, R., Sealy, B. J., Kaczanowski, J., Nowicki, L., Appl. Phys. Lett. 67, 1847 (1995).Google Scholar
30. Adler, D. L., Jacobson, D. C., Eaglesham, D. J., Marcus, M. A., Benton, J. L., Poate, J. M., and Citrin, P. H. Appl. Phys. Lett. 61, 2181 (1992).Google Scholar
31. Needels, M., Schlüter, M., and Lannoo, M., Phys. Rev. B, 47, 15533 (1993)Google Scholar
32. Pizzini, S., Binetti, S., Calcina, D., Morgante, N. and Cavallini, A., Mater Sci Eng B, 72, 173 (2000)Google Scholar
33. Przybyliñska, H., Jantsch, W., Suprun-Belevitch, Yu., Stepikhova, M., Palmetshofer, L., Hendorfer, G., Kozanecki, A., Wilson, R.J. and Sealy, B.J., Phys. Rev. B, 54, 2532 (1996)Google Scholar
34. Vinh, N. Q., Przybyliñska, H., Krasil'nik, Z. F. and Gregorkiewicz, T., Phys. Rev. Lett, 90, 066401 (2003)Google Scholar
35. Kveder, V. V., Steinman, E. A., Shevchenko, S. A., and Grimmeiss, H. G., Phys. Rev. B 51, 10520 (1995)Google Scholar
36. Sveinbjörnsson, E.Ö. and Weber, J., Appl. Phys. Lett. 69, 2686 (1996)Google Scholar
37. Vernon-Parry, K. D., Evans-Freeman, J. H., Hawkins, I. D., Dawson, P. and Peaker, A. R., J. Appl. Phys., 89, 2715 (2001)Google Scholar
38. Namavar, F., Lu, Feng, Perry, C.H., Cremins, A. Kalkhoran, N.M. and Soref, R. A. J. Appl. Phys., 77, 4813 (1995)Google Scholar
39. Taskin, T., Gardelis, S., Evans, J.H., Hamilton, B. and Peaker, A.R., Electron. Lett. 31, 2132 (1995)Google Scholar
40. Kenyon, A. J., Chryssou, C. E., Pitt, C. W., Shimizu-Iwayama, T., Hole, D. E., Sharma, N. and Humphreys, C. J., J. Appl. Phys., 91, 367 (2002)Google Scholar
41. Wojdak, M., Klik, M., Forcales, M., Gusev, O. B., Gregorkiewicz, T., Pacifici, D., Franzo, G., Priolo, F. and Iacona, F., Phys. Rev. B, 69, 233315 (2004)Google Scholar
42.Si-based rare earth doped light emitting devicesGoogle Scholar
43. Castagna, M.E., Coffa, S., Monaco, M., Proceedings of SPIE - The International Society for Optical Engineering, v 5366, Light-Emitting Diodes: Research, Manufacturing, and Applications VIII, 137, (2004),Google Scholar
44.The concept of the “impossible dream” was popularised by the American songwriter Darien, J. in The Quest (1965) shortly after the publication by R.L. Bell of the theoretical proposal for an electrically pumped GaAs rare earth LASER.Google Scholar