Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:39:56.490Z Has data issue: false hasContentIssue false

Er environment in a-Si:HEr> prepared by PECVD

Published online by Cambridge University Press:  17 March 2011

Cínthia Piamonteze
Affiliation:
Instituto de Física “Gleb Wataghin”, UNICAMP, C. P. 6165, 13083-970 Campinas, SP, Brazil
Leandro R. Tessler
Affiliation:
Instituto de Física “Gleb Wataghin”, UNICAMP, C. P. 6165, 13083-970 Campinas, SP, Brazil
Hélio Tolentino
Affiliation:
Laboratório Nacional de Luz Síncrotron, C. P. 6093, 13083-970, Campinas, SP, Brazil
Maria do Carmo Martins Alves
Affiliation:
Laboratório Nacional de Luz Síncrotron, C. P. 6093, 13083-970, Campinas, SP, Brazil
Gerhard Weiser
Affiliation:
Marburg University, Marburg, Germany
Eugeny Terukov
Affiliation:
A. F. Ioffe Institute, St. Petersburg, Russia
Get access

Abstract

The Er local environment of a-Si:H<Er> prepared by PECVD using a metalorganic precursor was determined by EXAFS. We found that in as-deposited samples Er is coordinated to 6 oxygen atoms at 2.28±0.01Å, very similar to Er2O3. Annealing at 420°C hardly affects the Er neighborhood, but higher annealing temperatures (starting at 600°C up to 1033°C) decrease the Er-O separation as much as 0.05Å, maintaining the Er average coordination around 6. This is interpreted as due to the formation of a carbon second neighbor shell. Our results show that the Er local environment is not related with the luminescence enhancement for annealing at moderate temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. F., Fitzgerald, E. A., Xie, Y.-H., Poate, J. M. and Kimerling, L. C., J. Appl. Phys., 70, 2672 (1991).Google Scholar
2. Lombardo, S., Campisano, S. U., Hoven, G. V. van den, Cacciato, A. and Polman, A., Appl. Phys. Lett., 63, 1942 (1993).Google Scholar
3. Tessler, L. R., Braz. J. Phys. 29, 616 (1999).Google Scholar
4. Bressler, M. S., Gusev, O. B., Kudoyarova, V. Kh., Kuznetsov, A. N., Pak, P. E., Terukov, E. I., Yassievich, I. N., Zakharchenya, B. P., Fuhs, W. and Sturm, A., Appl. Phys. Lett., 67, 3599 (1995).Google Scholar
5. Shin, J. H., Serna, R., Hoven, G. N. van den, Polman, A., Sark, W. G. J. H. M. van and Vredenberg, A. M., Appl. Phys. Lett., 68, 997 (1996).Google Scholar
6. Terukov, E. I., Kon'kov, O. I., Kudoyarova, V. Kh., Gusev, O. B. and Weiser, G., Semiconductors 32, 884 (1998).Google Scholar
7. Tessler, L. R., Piamonteze, C., Iniguez, A. C., Alves, M. C. Martins and Tolentino, H., in Applications of Synchrotron Radiation Techniques to Materials Science IV, ed. Mini, S. M., Perry, D. L., Stock, S. R. and Terminello, L. J., (Mat. Res. Soc. Proc. 524, Pittsburgh, 1998), pp. 327332.Google Scholar
8. Piamonteze, C., Iniguez, A. C., Tessler, L. R., Alves, M. C. Martins, Tolentino, H., Phys. Rev. Lett. 81, 4652 (1998).Google Scholar
9. Masterov, V. F., Nasredinov, F. S., Seregin, P. P., Kudoyarova, V. Kh., Kuznetsov, A. N. and Terukov, E. I., Appl. Phys. Lett. 72, 728 (1998).Google Scholar
10. Masterov, V. F., Nasredinov, F. S., Seregin, P. P., Terukov, E. I. and Mezdrogina, M. M., Semiconductors 32, 636 (1998).Google Scholar
11. Terukov, E. I., Kon'kov, O. I., Kudoyarova, V. Kh. and Gusev, O. B., Semiconductors 33, 177 (1999).Google Scholar
12. Ressler, T., J. Physique IV 7, C2269 (1997).Google Scholar
13. Andry, P. S., Varhue, W. J., Ladipo, F., Ahmed, K., Adams, E., Lavole, M., Klein, P. B., Hengehold, R. and Hunter, J., J. Appl. Phys. 80, 551 (1996).Google Scholar
14. Tessler, L. R., Piamonteze, C., Alves, M. C. Martins, Tolentino, H., J. Non-Cryst. Solids 266 (2000) 598.Google Scholar