Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T04:24:53.810Z Has data issue: false hasContentIssue false

Equilibrium and Non-Equilibrium Phases and Phase Diagrams in Blends of Polymer Liquid Crystals with Enoineerino Polymers

Published online by Cambridge University Press:  21 February 2011

Witold Brostow
Affiliation:
Center for Materials Characterization and Department of Chemistry, University of North Texas, Denton, TX 76203-5371
Theodore S. Dziemianowicz
Affiliation:
Himont U.S.A., Inc., 800 Greenbank Road, Wilmington, DE 19808
Michael Hess
Affiliation:
Center for Materials Characterization and Department of Chemistry, University of North Texas, Denton, TX 76203-5371 FB6-Physikalische Chemie, Universitāt Duisburg, Postfach 10 16 29, D-4100 Duisburg 1, Federal Republic of, Germany
Robert Kosfeld
Affiliation:
FB6-Physikalische Chemie, Universitāt Duisburg, Postfach 10 16 29, D-4100 Duisburg 1, Federal Republic of, Germany
Get access

Abstract

This work represents a continuation of earlier studies of blends of polymer liquid crystals (PLC) with ordinary engineering polymers (EP). We now focus on connections between mechanical and other properties and phase structures and phase diagrams. Pure PLC are already two-phase systems; in each case addition of an EP complicates the situation further. In particular, we are concerned with phases which we call quasi-liquids, at temperatures between the glass transition and the melting point. Quasi-liquids do not have the mobility usually associated with liquids - because of the presence of other constituents and also because of orientational effects produced by the mesogenic groups. In phase diagrams of PLC-containing systems one should also take into account non-equlibrium phases. We are trying to show how such diagrams make possible Intelligent processing and a better control of properties of the PLC + EP materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kosfeld, R., Hess, M. and Friedrich, K., Mater. Chem. & Phys. 18, 93 (1987).Google Scholar
2. Brostow, W., Dziemianowicz, T.S., Romanski, J. and Werber, W., Polymer Eng. &Sci. 28, 785 (1988).Google Scholar
3. Friedrich, K., Hess, M. and Kosfeld, R., Makromol. Chem. Symp. 16, 251 (1988).Google Scholar
4. Schubert, F., Friedrich, K., Hess, M. and Kosfeld, R., Molec. Cryst. Liq. Cryst. 155, 477 (1988).Google Scholar
5. Kosfeld, R., Schubert, F., Hess, M. and Brostow, W., the following paper in the same MRS Symp. Proceedings volume.Google Scholar
6. Jackson, W.J. Jr. and Kuhfuss, H.F., J. Polymer Sci. Chem. 1, 2043 (1976).Google Scholar
7. Brostow, W. and Corneliussen, R.D., in Failure of Plastics, edited by Brostow, W. and Corneliussen, R.D. (Hanser Publishers, Munich - Vienna -New York, 1986), Chapter 1.Google Scholar
8. Brostow, W., Kunststoffe 78, 411 (1988).Google Scholar
9. Brostow, W., Polymer 31, in press (1990).Google Scholar
10. Menczel, J. and Wunderlich, B., J. Polymer Sci. Phys, 18, 1433 (1980).Google Scholar
11. Viney, C. and Windle, A.H., J. Mater. Sci. 17, 2661 (1982).Google Scholar
12. Meesiri, W., Menczel, J., Gaur, U. and Wunderlich, B., J. Polymer Scd. Phys. 20, 719 (1982).Google Scholar
13. Kricheldorf, H.R., Schwarz, G., Makromol. Chem, 184, 475 (1983).Google Scholar
14. Gedde, U. W., Buerger, D. and Boyd, R. H., Macromolecules 20, 988 (1987).Google Scholar
15. Benson, R. S. and Lewis, D. N., Polymer Commun. 28, 289 (1987).Google Scholar
16. Hedmark, P., Ph.D. thesis, The Royal Institute of Technology, Stockholm, 1988.Google Scholar
17. Chou, Ch. and Clough, S. B., Polymer Eng. & Sci. 28, 65 (1988).Google Scholar
18. Jeziorny, A., Polimery 34, 210 (1989).Google Scholar