Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T23:13:18.105Z Has data issue: false hasContentIssue false

Equation of State of Warm Condensed Matter

Published online by Cambridge University Press:  10 February 2011

T. W. Barbee III
Affiliation:
Physics Dept., Lawrence Livermore National Laboratory, Livermore, CA 94550
D. A. Young
Affiliation:
Physics Dept., Lawrence Livermore National Laboratory, Livermore, CA 94550
F. J. Rogers
Affiliation:
Physics Dept., Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

Recent advances in computational condensed matter theory have yielded accurate calculations of properties of materials. These calculations have, for the most part, focused on the low temperature (T=0) limit. An accurate determination of the equation of state (EOS) at finite temperature also requires knowledge of the behavior of the electron and ion thermal pressure as a function of T. Current approaches often interpolate between calculated T=0 results and approximations valid in the high T limit. Plasma physics-based approaches are accurate in the high temperature limit, but lose accuracy below T∼Tfermi. We seek to “connect up” these two regimes by using ab initio finite temperature methods (including linear-response[l] based phonon calculations) to derive an equation of state of condensed matter for T<Tfermi.

We will present theoretical results for the principal Hugoniot of shocked materials, including carbon and aluminum, up to pressures P>100 GPa and temperatures T> 104K, and compare our results with available experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Giannozzi, P., de Gironcoli, S., Pavone, P., and Baroni, S., Phys. Rev. B 43, 7231 (1991).Google Scholar
2. Young, D. A. and Corey, E. M., J. Appl. Phys. 78, 3748 (1995).Google Scholar
3. Ihm, J., Zunger, A., and Cohen, M. L., J. Phys. C 12, 4409 (1979).Google Scholar
4. McQueen, R. G., Marsh, S. P., Taylor, J. W., Fritz, J. N., and Carter, W. J., in High-Velocity Impact Phenomena, edited by Kinslow, R. (Academic, New York, 1970) Chap. 7.Google Scholar
5. Aleksandrov, I. V., Goncharov, A. F., Zisman, A. N., and Stishov, S. M., Zh. Eksp. Teor. Fiz. 93, 680 (1987) [Sov. Phys. JETP 66, 384 (1987)].Google Scholar
6. Pavlovskii, M. N., Fiz. Tverd. Tela 13, 893 (1971) [Sov. Phys. Solid State 13, 741 (1971)].Google Scholar
7. Rogers, F. J., Phys. Rev. A 24, 1531 (1981).Google Scholar
8. Rogers, F. J. and Young, D. A., Phys. Rev. E 56, 5876 (1997).Google Scholar
9. Vladimírov, A. S., Voloshin, V. N., Nogin, V. N., Petrovtsev, A. V., and Simonenko, V. A., Pis'ma Zh. Eksp. Teor. Fiz. 39, 69 (1984) [JETP Lett. 39, 82 (1984)].Google Scholar
10. Da Silva, L. B. et al., Phys. Rev. Lett. 78, 483 (1997).Google Scholar