No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
The thermodynamic equilibrium state of the Ga-Al-As-C-H system was determined theoretically by means of an iterative equilibrium constant method. This method of calculation is presented and discussed. With very little operator input, the program is capable of computing the partial pressures of the gas-phase species present in the equilibrated system.
In these calculations the system was considered to be saturated with solid-phase A1GaAs and included 58 plausible gas-phase intermediates which evolved from the initially present gas species; trimethylgallium, trimethylaluminum, arsine, and hydrogen. Temperature and total system pressure ranges investigated were 750–1100 K and 0.1 atm-1.0 atm, respectively. The effects of temperature and pressure variations, in addition to effects caused by changes in the appropriate atom ratios, have been delineated. The properties of this equilibrated system are compared with those from recent thermodynamic research efforts on AlGaAs systems consisting of only gaseous constituents.