Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:35:01.268Z Has data issue: false hasContentIssue false

Epoxy Based Non-Linear Optical Polymers Functionalized With Chromophores Containing Tricyanovinyl Group

Published online by Cambridge University Press:  10 February 2011

Xiaogong Wang
Affiliation:
University of Massachusetts Lowell, Lowell, MA 01854
Jeng-I Chen
Affiliation:
Molecular Technologies Inc., Westford, MA 01886*
Sutiyao Marturunkakul
Affiliation:
University of Massachusetts Lowell, Lowell, MA 01854
Lian Li
Affiliation:
Molecular Technologies Inc., Westford, MA 01886*
Jayant Kumar
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics
Sukant K. Tripathy
Affiliation:
University of Massachusetts Lowell, Lowell, MA 01854
Get access

Abstract

Two types of second-order nonlinear optical epoxy-based polymers functionalized with tricyanovinyl chromophores were synthesized. One was prepared by azo coupling between an epoxy prepolymer and 4-tricyanovinylaniline while the other was synthesized by reacting the epoxy prepolymer with tetracyanoethylene. The d33 for the polymers were determined to be 243 and 178 pm/V at 1.064 μm respectively. Retentions of deff value of 83% and 65% were observed after the polymers had been heated at 80°C for 1000 hours.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chemla, D., Zyss, J., Nonlinear Optical Properties of Organic Materials and Crystals, (Academic Press, Orlando, Fl, 1987), V 1,2.Google Scholar
2. Prasad, P., Williams, D., Nonlinear Optical Effects in Molecules and Polymers, (John Wiley and Sons, New York, 1991).Google Scholar
3. Zyss, J., Molecular Nonlinear Optics: Materials, Physics and Devices, (Academic Press, Inc 1994).Google Scholar
4. Burland, D.M., Miller, R. D. and Walsh, C. A., Chemical Reviews 94, 31 (1994).Google Scholar
5. Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem., 35 (2) (1994).Google Scholar
6. Tamura, K., Padias, A. B., Hall, H. K. and Peyghambarian, N., Appl. Phys. Lett., 60, 1803 (1992).Google Scholar
7. Jen, A. K.-Y., Drost, K. J., Rao, V. P., Cai, Y. M., Liu, Y. J., Mininni, R. M., Kenney, J. T., Binkley, E. S., Marder, S. R., Dalton, L. R. and Xu, C., Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem., 35 (2), 130 (1994).Google Scholar
8. Drost, K. J., Jen, A. K.-Y and Drzewinski, M. A., Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem., 35 (2), 252 (1994).Google Scholar
9. Klee, J. K., Hagele, K. and Przybyski, M., Mocromol. Chem. Phys., 196, 937 (1995).Google Scholar
10. Singer, K. D., Sohn, J. E. and Lalama, S. J., Appl. Phys. Lett. 49, 248 (1986).Google Scholar
11. Cheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., J. Phys. Chem. 95, 10631 (1991).Google Scholar
12. Cahill, P., Singer, K., King, L., Opt. Lett., 14, 1137 (1987).Google Scholar