Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:56:55.786Z Has data issue: false hasContentIssue false

Epitaxy of Thin Ternary Co1−xFexSi2 Silicide Films on SI(111)

Published online by Cambridge University Press:  10 February 2011

L. Khouchaf
Affiliation:
LPSE - FST, Université de Haute Alsace, CNRS, F-68093 Mulhouse -, France
D. Berling
Affiliation:
LPSE - FST, Université de Haute Alsace, CNRS, F-68093 Mulhouse -, France
V. Pierron-Bohnes
Affiliation:
GEMM - IPCMS, Université Louis Pasteur, CNRS, F-67037 Strasbourg -, France
C. Pirri
Affiliation:
LPSE - FST, Université de Haute Alsace, CNRS, F-68093 Mulhouse -, France
S. Hong
Affiliation:
LPSE - FST, Université de Haute Alsace, CNRS, F-68093 Mulhouse -, France
P. Wetzel
Affiliation:
LPSE - FST, Université de Haute Alsace, CNRS, F-68093 Mulhouse -, France
G. Gewinner
Affiliation:
LPSE - FST, Université de Haute Alsace, CNRS, F-68093 Mulhouse -, France
M. H. Tuilier
Affiliation:
LPSE - FST, Université de Haute Alsace, CNRS, F-68093 Mulhouse -, France
S. Lefebvre
Affiliation:
LURE, Université de Paris-Sud, CNRS, F-91405 Orsay -, France
R. Cortts
Affiliation:
LURE, Université de Paris-Sud, CNRS, F-91405 Orsay -, France
Get access

Abstract

Low-energy electron diffraction, x-ray diffraction, and x-ray absorption techniques are used to investigate the atomic structure of ternary silicides (MSi2, M = Co, Fe). 100 Å thick Co1−xFexSi2 films (with 0 ≤ × ≤ 1) were grown by codeposition onto a Si(111) substrate held at room temperature. The as-deposited films are metallic and adopt an ordered cubic structure of CsCl-type with essentially random vacancies, very similar to that of room-temperature grown FeSi2 and CoSi2 silicides. Upon annealing at 650°C, Fe-rich (x ≥ 0.85) films invariably convert into a semiconducting phase with a structure similar to the orthorhombic β-FeSi2 one. Yet, most interestingly, an almost cubic structure is preserved for x ≤ 0.85. Nevertheless, x-ray diffraction reveals a demixion into a Co rich CaF2-type silicide and a Fe-rich phase with a nearly cubic α-FeSi2 type structure. Extended x-ray absorption fine structure measurements indicate a local environment of Fe atoms similar to that in CsCl-type or α-FeSi2-type structure over the whole 0 < x < 0.85 composition range, showing that Fe does not merely substitute for Co atoms in a perfect CaF2-type CoSi2 structure, even for very low Fe content. In contrast, the local environment of Co atoms is similar to that in CoSi2 for Co-rich ternary compounds. Substantial modifications around Co sites are although observed in Fe richer silicides, suggesting that for x < 0.5, an appreciable amount of Co is incorporated in the α-FeSi2-type silicide phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tung, R. T., Bean, J. C., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 40 684 (1982).Google Scholar
2. Dusausoy, P. Y., Protas, J., Wadji, R., and Roques, B., Acta. Cryst. B27, 1209 (1971).Google Scholar
3. Pirri, C., Hong, S., Tuilier, M. H., Wetzel, P., Gewinner, G., and Cortés, R., Phys. Rev. B53 1368 (1996).Google Scholar
4. Hong, S., Pirri, C., Wetzel, P., Bolmont, D., and Gewinner, G., Appl. Surf. Sci. 90 66(1995).Google Scholar
5. Känel, H. von, Mäder, K. A., Müller, E., Onda, N., and Sirringhaus, H., Phys. Rev. B 45 13807 (1992).Google Scholar
6. Chevrier, J., Stocker, P., Vinh, Le Than, Gay, J. M. and Derrien, J., Europhys. Lett. 22 (6) 449(1993).Google Scholar
7. Lin, X. W., Behar, M., Desimoni, J., Bernas, H., Washburn, J., and Liliental-Weber, Z., Appl. Phys. Lett. 63 (1) 105 (1993).Google Scholar
8. Jedrecy, N., Waldhauer, A., Sauvage-Simkin, M., Pinchaux, R., and Zheng, Y., Phys.Rev. B 49, 4725 (1994).Google Scholar
9. Berbezier, I., Chevrier, J., and Derrien, J., Surf. Sci. 315, 27 (1994).Google Scholar
10. , Onda, Henz, J., Müller, E., Mäder, K. A. and Kanel, H. von, Appl. Surf. Sci. 56–58, 421 (1992).Google Scholar
11. Hong, S., Pirri, C., Wetzel, P., Gewinner, G., Phys. Rev. B55, 13040 (1997).Google Scholar
12. Haderbache, L., Wetzel, P., Pinri, C., Peruchetti, J. C., Bolmont, D., and Gewinner, G., Phys. Rev. B 39 1422 (1989).Google Scholar
13. Hong, S., Kafader, U., Wetzel, P., Gewinner, G., and Pirri, C. Phys. Rev. B 51,17667 (1995)Google Scholar
14. Kafader, U., Wetzel, P., Pinri, C., and Gewinner, G., Appl. Surf Sci. 70–71, 573 (1992).Google Scholar
15. Cherief, N., D'Anterroches, C., Cinti, R. C., Nguyen, T. A., and Derrien, J., Appl. Phys. Lett. 55, 1671 (1989).Google Scholar
16. Pinri, C., Tuilier, M. H., Wetzel, P., Hong, S., Bolmont, D., Gewinner, G., Cortès, R., and Heckmann, O., Phys. Rev. B 51 2302 (1995).Google Scholar
17. Khouchafet, L. al. unpublished.Google Scholar