Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T10:21:28.124Z Has data issue: false hasContentIssue false

Epitaxial silicon carbide simulations vs. experiments: etching, growth rates and aluminum/nitrogen doping

Published online by Cambridge University Press:  11 February 2011

Jérôme Mézière
Affiliation:
LTPCM UMR 5614 of CNRS, INPG/UJF, Domaine Universitaire, BP 75, 38402 Saint Martin d′Hères cedex, France.
Elisabeth Blanquet
Affiliation:
LTPCM UMR 5614 of CNRS, INPG/UJF, Domaine Universitaire, BP 75, 38402 Saint Martin d′Hères cedex, France.
Michel Pons
Affiliation:
LTPCM UMR 5614 of CNRS, INPG/UJF, Domaine Universitaire, BP 75, 38402 Saint Martin d′Hères cedex, France.
Jean-Marc Dedulle
Affiliation:
LTPCM UMR 5614 of CNRS, INPG/UJF, Domaine Universitaire, BP 75, 38402 Saint Martin d′Hères cedex, France.
Pierre Ferret
Affiliation:
CEA/DRT/LETI CEA-Grenoble, 38054 Grenoble Cedex 9, France
Léa Di Cioccio
Affiliation:
CEA/DRT/LETI CEA-Grenoble, 38054 Grenoble Cedex 9, France
Thierry Billon
Affiliation:
CEA/DRT/LETI CEA-Grenoble, 38054 Grenoble Cedex 9, France
Get access

Abstract

This paper summarizes recent experimental and simulation results on etching, growth rates and aluminum/nitrogen incorporation in SiC epitaxial layers grown in a horizontal LPCVD hotwall reactor commercialized by the Epigress company. The combined use of modeling and experiments allows to identify and to quantify the main growth phenomena. In this paper, a chemistry model including surface deposition and hydrogen etching is first described. It is found that the contribution of the etching of the susceptor to the SiC growth is not negligible. A simple model is used to describe nitrogen incorporation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Di Cioccio, L. and Billon, T., Mater. Sci. For. 389–396 (2), 1119 (2002).Google Scholar
2. Kuczmarski, M.A., J. CVD 2 (1), 20 (1993).Google Scholar
3. Lofgren, P.M., Ji, W., Hallin, C., and Gu, C.Y., J. Electrochem. Soc. 147 (1), 164 (2000).Google Scholar
4. Vorob'ev, A.N., Karpov, S. Yu, Bord, O.V., Zhmakin, A.I., Lovtsus, A.A., and Makarov, Yu.N., Diam. Rel. Mat. 9, 472 (2000).Google Scholar
5. Pons, M., Mézière, J., Kuan, S. Wan Tang, Dedulle, J.M., Blanquet, E., Di Cioccio, L., Ferret, P., and Billon, Th., J. Phys. IV France 11 (3), 1079 (2001).Google Scholar
6. Danielsson, Ö., Forsberg, U., Henry, A., and Janzen, E., J. Crystal Growth 235, 352 (2002).Google Scholar
7. Mézière, J., Pons, M., Kuan, S. Wan Tang, Dedulle, J.M., Blanquet, E., Ferret, P., Di Cioccio, L., and Billon, T., presented at the ECSCRM 2002, Linköping, September 1–5, 2002, Mat. Sci. For. (2002)(to be published).Google Scholar
8. Raffy, C., Blanquet, E., Pons, M., Melius, C., and Allendorf, M.D., J. Phys. IV France 9 (8), 205 (1999).Google Scholar
9. Raffy, C., Allendorf, M.D., Blanquet, E., and Melius, C., presented at the XV Int. Conf on CVD, Toronto, Canada, 2000.Google Scholar
10. Allendorf, M.D. and Kee, R.J., J. Electrochem. Soc 138 (3), 841 (1991).Google Scholar
11. Vorob'ev, A.N., Karpov, S. Yu, Bogdanov, M.V., Komissarov, A.E., Bord, O.V., Zhmakin, A.I., and Makarov, Yu.N., Computational Materials Science 24, 520 (2002).Google Scholar
12. Clemen, L.L., Choyke, W. J., and Devaty, R.P., Amorphous and crystalline silicon carbide, 105 (1992).Google Scholar
13. Danielsson, Ö., Forsberg, U., and Janzen, E., J. Crystal Growth (2002)(to be published).Google Scholar
14. Larkin, D.J., Neudeck, P.G., Powell, J.A., and Matus, L.G., Appl. Phys. Letters 65, 1659 (1994).Google Scholar