Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:37:27.565Z Has data issue: false hasContentIssue false

Epitaxial Semiconducting and Metallic Iron Silicides

Published online by Cambridge University Press:  03 September 2012

H. Von KÄNel
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH—8093 Ztrich, Switzerland
U. Kafader
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH—8093 Ztrich, Switzerland
P. Sutter
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH—8093 Ztrich, Switzerland
N. Onda
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH—8093 Ztrich, Switzerland
H. Sirringhaus
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH—8093 Ztrich, Switzerland
E. MÜller
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH—8093 Ztrich, Switzerland
U. Kroll
Affiliation:
Institute of Microtechnology, University of Neuchâtel, Rue A.-L. Breguet 2, CH-2000 Neuchâtel, Switzerland
C. Schwarz
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH—8093 Ztrich, Switzerland
S. Goncalves—conto
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH—8093 Ztrich, Switzerland
Get access

Abstract

We discuss the properties of semiconducting iron silicides, grown epitaxially on Si(001) and Si(111) by molecular beam epitaxy. The growth on Si (111) involves phase transitions from epitaxially stabilized metallic phases, leading to larger epitaxial β-FeSi2 grains than most other deposition procedures. The structural and electric properties of β-FeSi2/Si(001) are improved considerably for growth temperatures above 650 °C. Hall mobilities of p—conducting films reach values up to 600 cm2/Vsec at 100 K, at carrier densities below 1017 cm−3. Despite of the high majority carrier mobility and low carrier density, the photoelectric response of p-β-FeSi2/n-Si(001) diodes does not yield any significant contribution from the silicide, however, in accordance with the expected band structure diagram.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cheng, H.C., Chen, L.J., and Your, T.R., Mat. Res. Soc. Symp. Proc. 25, 441 (1984).CrossRefGoogle Scholar
2. Bost, M.C. and Mahan, J.E., J. Appl. Phys. 58, 2696 (1985); 64, 2034 (1988).Google Scholar
3. Kennou, S., Cherief, N., Cinti, R.C., and Tan, T.A. Nguyen, Surf. Sci. 211/212, 685 (1989).CrossRefGoogle Scholar
4. Cherief, N., Anterroches, C.D', Cinti, R.C., Tan, T.A. Nguyen, and Derrien, J., Appl. Phys. Lett. 55, 1671 (1989).CrossRefGoogle Scholar
5. Rizzi, A., Moritz, H., and Liith, H., J. Vac. Sci. Technol. A 9, 912 (1991).Google Scholar
6. Alvarez, J., Hinarejos, J.J., Michel, E.G., Gallego, J.M., Parga, A.L. Vazquez de, Figuera, J. de la, Ocal, C., and Miranda, R., Appl. Phys. Lett. 59, 99 (1991).Google Scholar
7. Figuera, J. de la, Parga, A.L. Vazquez de, Alvarez, J., Ibanez, J., Ocal, C., and Miranda, R., Surf. Sci. 264, 45 (1992).Google Scholar
8. Wallart, X., Zeng, H.S., Nys, J.P., and Dalmai, G., Mat. Sci. Eng. B 9, 253 (1991).CrossRefGoogle Scholar
9. Crescenzi, M. De, Gaggiotti, G., Motta, N., Patella, F., Balzarotti, A., Mattogno, G., and Derrien, J., Surf. Sci. 251/252, 175 (1991).Google Scholar
10. Moritz, H., Rösen, B., Popovic, S., Rizzi, A., and Liuth, H., J. Vac. Sci. Technol. B 10, 1704 (1992).CrossRefGoogle Scholar
11. Lagomarsino, S., Scarinci, F., Savelli, G., Giannini, C., Castrucci, P., and Grimaldi, M.G., J. Appl. Phys. 71, 1224 (1992).Google Scholar
12. Peale, D.R., Haight, R., and Ott, J., Appl. Phys. Lett. 62, 1402 (1993).Google Scholar
13. Konuma, K., Vrijmoeth, J., Zagwijn, P. M., Frenken, J. W. M., Vlieg, E., and Veen, J. F. van der, J. Appl. Phys. 73, 1104 (1993).CrossRefGoogle Scholar
14. Gallego, J.M., Alvarez, J., Hinarejos, J. J., Michel, E. G., and Miranda, R.,Surf. Sci. 251/252, 59 (1991).CrossRefGoogle Scholar
15. Chevrier, J., Thanh, V. Le, Nitsche, S., and Derrien, J., Appl. Surf. Sci. 56–58, 438 (1992).Google Scholar
16. Lefki, K., Muret, P., Cherief, N., and Cinti, R.C., J. Appl. Phys. 69, 352 (1991).Google Scholar
17. Derrien, J., Chevrier, J., Thanh, V. Le, and Mahan, J.E., Appl. Surf. Sci. 56–58, 382 (1992).CrossRefGoogle Scholar
18. Stuhlmann, Ch., Schmidt, J., and Ibach, H., J. Appl. Phys. 72, 5905 (1992).CrossRefGoogle Scholar
19. Derrien, J., Chevrier, J., Thanh, V. Le, Crumbaker, T.E., Natoli, J.Y., and Berbezier, I., Appl. Surf. Sci. 70/71, 546 (1993).CrossRefGoogle Scholar
20. Raunau, W., Niehus, H., and Comsa, G., Surf. Sci. Lett. 284, L375 (1993).Google Scholar
21. Raunau, W., Niehus, H., Schilling, T., and Comsa, G., Surf. Sci. 286, 203 (1993).CrossRefGoogle Scholar
22. Alvarez, J., Hinarejos, J.J., Michel, E.G., and Miranda, R., Surf. Sci. 269/270, 1011 (1992).CrossRefGoogle Scholar
23. Mahan, J.E., Geib, K.M., Robinson, G.Y., Long, R.G., Xinghua, Y., Bai, G., Nicolet, M.A., and Nathan, M., Appl. Phys. Lett. 56, 2126 (1990).Google Scholar
24. Geib, K.M., Mahan, J.E., Long, R.G., Nathan, M., and Bai, G., J. Appl. Phys. 70, 1730 (1991).CrossRefGoogle Scholar
25. Sirringhaus, H., Onda, N., Müller-Gubler, E., Mffller, P., Stalder, R., and Kanel, H. von, Phys. Rev. B 47, 10567 (1993).CrossRefGoogle Scholar
26. Schäfer, H.Ch., Rösen, B., Moritz, H., Rizzi, A., Lengeler, B., Liith, H., and Gerthsen, D., Appl. Phys. Lett. 62, 2271 (1993).Google Scholar
27. Rösen, B., Schäfer, H.Ch., Dieker, Ch., Lith, H., Rizzi, A., and Gerthsen, D., J. Vac. Sci. Technol. B 11, 1407 (1993).Google Scholar
28. Regolini, J.L., Trincat, F., Berbezier, I., and Shapira, Y., Appl. Phys. Lett. 60, 956 (1992).CrossRefGoogle Scholar
29. Oostra, D.J., Vandenhoudt, D.E.W., Bulle-Lieuwma, C.W.T., and Naburgh, E.P., Appl. Phys. Lett. 59, 1737 (1991).Google Scholar
30. Gerthsen, D., Radermacher, K., Dieker, Ch., and Mantl, S., J. Appl. Phys. 71, 3788 (1992 CrossRefGoogle Scholar
31. unt, T.D., Reeson, K.J., Gwilliam, R.M., Homewood, K.P., Wilson, R.J., Sealy, B.J., Meekison, C.D., Booker, G.R., and Oberschachtsiek, P., Nuclear Instruments and Methods in Physics Research B 80/81, 781 (1993).Google Scholar
32. Dusausoy, Y., Protas, J., Wandji, R., and Roques, B., Acta. Cryst. B 27, 1209 (1971).CrossRefGoogle Scholar
33. Müller, E., Deller, H.R., Nissen, H.U., and Knel, H. von, presented at the “Dreilindertagung Elektronenmikroskopie”, Zürich, Switzerland, 1993 (unpublished).Google Scholar
34. Aronsson, B., Acta Chem. Scand. 14, 1414 (1960).Google Scholar
35. Chevrier, J., Stocker, P., Le Thanh Vinh, Gay, J.M., and Derrien, J., Europhys. Lett. 22, 449 (1993).Google Scholar
36. Christensen, N.E., Phys. Rev. B 42, 7148 (1990).Google Scholar
37. Onda, N., Henz, J., Mtiller, E., Känel, H. von, Schwarz, C., and Pixley, R. E., Helv. Phys. Acta 64, 197 (1991).Google Scholar
38. Känel, H. von, Stalder, R., Sirringhaus, H., Onda, N., and Henz, J., Appl. Surf. Sci. 53, 196 (1992).Google Scholar
39. Grimaldi, M.G., Baeri, P., Spinella, C., and Lagomarsino, S., Appl. Phys. Lett. 60, 1132 (1992).Google Scholar
40. Motta, N., Sgarlata, A., Gaggiotti, G., Patella, F., Balzarotti, A., and Crescenzi, M. de, Surf. Sci. 284, 257 (1993).Google Scholar
41. Alvarez, J., Parga, A.L. Vazquez de, Hinarejos, J.J., Figuera, J. de la, Michel, E.G., Ocal, C., and Miranda, R.,Appl. Surf. Sci. 70/71, 578 (1993).Google Scholar
42. Desimoni, J., Lin, X. W., Washburn, J., Lilienthal-Weber, Z., Bernas, H., and Behar, M., Appl. Phys. Lett. 62, 306 (1993).Google Scholar
43. Känel, H. von, Mäder, K.A., Müller, E., Onda, N., and Sirringhaus, H., Phys. Rev. B 45, 13807 (1992).CrossRefGoogle Scholar
44. Tung, R.T., and Schrey, F., Phys. Rev. Lett. 63, 1277 (1989).CrossRefGoogle Scholar
45. Bulle-Lieuwma, C.W.T., Vandenhoudt, D.E.W., Henz, J., Onda, N., and Känel, H. von, J. Appl. Phys. 73, 3220 (1993).Google Scholar
46. Känel, H. von, Onda, N., Sirringhaus, H., Müller-Gubler, E., Goncalves-Conto, S., and Schwarz, C., Appl. Surf. Sci. 70/71, 559 (1993).CrossRefGoogle Scholar
47. Mäider, K.A., Känel, H. von, and Baldereschi, A., Phys. Rev. B 48, 4364 (1993).CrossRefGoogle Scholar
48. Kafader, U., Wetzel, P., Pirri, C., and Gewinner, G., Appl. Phys. Lett. 63, 2360 (1993).Google Scholar
49. Rizzi, A., presented at the Fourth Int. Conf. on the Formation of Semiconductor Interfaces (ICFSI-4), Jülich, FRG, 1993 (unpublished).Google Scholar
50. Miglio, L., private communication.Google Scholar
51. Dimitriadis, C.A., Werner, J.H., Logothetidis, S., Stutzmann, M., Weber, J., and Nesper, R., J. Appl. Phys. 68, 1726 (1990).Google Scholar
52. Radermacher, K., Carius, R., and Mantl, S., presented at the E-MRS 1993 Spring Meeting, Strasbourg, France, 1993 (unpublished).Google Scholar
53. Giannini, C., Lagomarsino, S., Scarinci, F., and Castrucci, P., Phys. Rev. B 45, 8822 (1992):Google Scholar
54. Guizetti, G., Marabelli, F., Onda, N., and Känel, H. von, Solid State Comm. 86, 217, (1993).Google Scholar
55. Onda, N. (private communication).Google Scholar
56. Komabayashi, M. and Ido, S., Jap. J. Appl. Phys. 11A, 2883 (1991).Google Scholar
57. Valassiades, O., Dimitriades, C.A., and Werner, J.H., J. Appl. Phys. 70, 890 (1991).CrossRefGoogle Scholar
58. Look, D.C., Electrical Characterization of GaAs Materials and Devices, (John Wiley & Sons, New York, 1989), p. 75.Google Scholar
59. Birkholz, U. and Schelm, J., phys. stat. sol. 27, 413 (1968).Google Scholar
60. Staehli, J.-L., EPFL (private communication).Google Scholar