Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:47:54.810Z Has data issue: false hasContentIssue false

Epitaxial Oxide Films on Silicon: Growth, Modeling and Device Properties

Published online by Cambridge University Press:  10 February 2011

R. Droopad
Affiliation:
Physical Sciences Research Laboratories Motorola Labs, 2100E Elliot Road, Mail Drop EL308, Tempe AZ 85284Tel: (480) 413-3663, Fax: (480) 413-6631, Email: [email protected]
J. Wang
Affiliation:
Physical Sciences Research Laboratories Motorola Labs, 2100E Elliot Road, Mail Drop EL308, Tempe AZ 85284
K. Eisenbeiser
Affiliation:
Physical Sciences Research Laboratories Motorola Labs, 2100E Elliot Road, Mail Drop EL308, Tempe AZ 85284
Z. Yu
Affiliation:
Physical Sciences Research Laboratories Motorola Labs, 2100E Elliot Road, Mail Drop EL308, Tempe AZ 85284
J. Ramdani
Affiliation:
Physical Sciences Research Laboratories Motorola Labs, 2100E Elliot Road, Mail Drop EL308, Tempe AZ 85284
J. A. Curless
Affiliation:
Physical Sciences Research Laboratories Motorola Labs, 2100E Elliot Road, Mail Drop EL308, Tempe AZ 85284
C. D. Overgaard
Affiliation:
Physical Sciences Research Laboratories Motorola Labs, 2100E Elliot Road, Mail Drop EL308, Tempe AZ 85284
J. M. Finder
Affiliation:
Physical Sciences Research Laboratories Motorola Labs, 2100E Elliot Road, Mail Drop EL308, Tempe AZ 85284
J. A. Hallmark
Affiliation:
Physical Sciences Research Laboratories Motorola Labs, 2100E Elliot Road, Mail Drop EL308, Tempe AZ 85284
V. Kaushik
Affiliation:
Materials and Structures Laboratory, Semiconductor Products Sector, Austin TX 78721
B. Y. Nguyen
Affiliation:
Materials and Structures Laboratory, Semiconductor Products Sector, Austin TX 78721
D. S. Marshall
Affiliation:
Physical Sciences Research Laboratories Motorola Labs, 2100E Elliot Road, Mail Drop EL308, Tempe AZ 85284
W. J. Ooms
Affiliation:
Physical Sciences Research Laboratories Motorola Labs, 2100E Elliot Road, Mail Drop EL308, Tempe AZ 85284
Get access

Abstract

Using molecular beam epitaxy, thin films perovskite-type oxide SrxBa1−xTiO3 (0≤×≤1) has been grown epitaxially on Si(001) substrates. Reflection high energy electron diffraction measurements and X-ray diffraction analysis indicate that high quality heteroepitaxy on Si takes place with SrxBa1−xTiO3(001)//Si(001) and SrxBa1−xTiO3[010]//Si[10]. Extensive atomic simulations have been carried out to understand the initial growth mechanism of the oxide layers on silicon. SrTiO3 layers grown directly on Si have been used as the gate dielectric for the fabrication of MOSFET devices. By varying the growth conditions the thickness of the amorphous interfacial silicon oxide layer formed during the growth of the oxide layers has been engineered to minimize the device short channel effects. An effective oxide thickness <10 Å has been obtained for a 110 Å thick SrTiO3 dielectric film with interface state density around 6.4 × 1010 cm−2 eV-1, and the inversion layer carrier mobilities of 220 cm2 V−1 s−1 and 62 cm 2 V−ls−1 for NMOS and PMOS devices, respectively. The gate leakage in these devices is 2 orders of magnitude smaller than a comparable SiO2 gate dielectric MOSFET.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hu, C., IEDM Tech. Dig., p. 319 (1996).Google Scholar
2 Park, D., King, Y., Lu, Q., King, T.-J., Hu, C., Kalnitsky, A., Tay, S.-P., and Cheng, C.-C., IEEE Electron Device Letters, 19(11), p441 (1998).Google Scholar
3 Guo, X., Wang, X., Juo, Z., Ma, T. P. and Tamagawa, T., IEDM Technical Digest, p137 (1999).Google Scholar
4 Qi, W.-J., Nieh, R., Lee, B. H., Kang, L., Jeong, Y., Onishi, K., Ngai, T., Banerjee, S., and Lee, J. C., IEDM Technical Digest, p145 (1999).Google Scholar
5 Lee, B. H., Kang, L., Qi, W.-J., Nieh, R., Jeong, Y., Onishi, K. and Lee, J. C., IEDM Technical Digest, p133 (1999).Google Scholar
6 Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys., 87, p484 (2000).Google Scholar
7 Tokumitu, E., Itani, K., Moon, B. and Ishiwara, H., Mater. Res. Soc. Symp. Proc., (361)Google Scholar
8 Sanchez, F., Varela, M., Queralt, X., Aguiar, R. and Morenza, J.L., Appl. Phys. Lett., 61(18), p2228 (1992).Google Scholar
9 Looney, D. H., U.S. Patent No. 2,791,758.Google Scholar
10 Hoerman, B., Ford, G., Kaufman, L. and Wessels, B., ISIF'98, p.102C (1998).Google Scholar
11 McKee, R.A., Walker, F.J., Conner, J.R. and Specht, E.D., Appl. Phys. Letts. 59, p782 (1991).Google Scholar
12 Lyu, J., Jeong, J., Kim, K., Kim, B. and Yo, H. J., ETRI Journal, 20, p241.Google Scholar
13 Mori, H. and Ishiwara, H., Jap. J. Appl. Phys., Part 2 (Letters) 30, p 1415 (1991).Google Scholar
14 Sanchez, F., Aguiar, R., Trtik, V., Guerrero, C., Ferrater, C. and Varela, M., J. Mater. Res., 13, p 1422 (1998).Google Scholar
15 Nakagawara, O., Kobayashi, M., Yoshino, Y., Katayama, Y., Tabata, H. and Kawai, T., J. Appl. Phys. 78, p7226 (1995).Google Scholar
16 Mori, H. and Ishiwara, H., Jpn. J. Appl. Phys. 30, pL1415 (1991).Google Scholar
17 Moon, B.K. and Ishiwara, H., Jpn. J. Appl. Phys. 33, p 1472 (1994).Google Scholar
18 McKee, R., Walker, F. and Chisholm, M., Phys. Rev. Lett. 81, p3014 (1998).Google Scholar
19 McKee, R., Walker, F. and Chisholm, M., Mater. Res. Soc. Symp. Proc. 567, p415 (1999).Google Scholar
20 Yu, Z., Droopad, R., Ramdani, J., J.Curless, A., Overgaard, C.D., Finder, J.M., Eisenbeiser, K., Wang, J., Hallmark, J.A. and Ooms, W.J., Mater. Res. Soc. Symp. Proc. 567, p 427 (1999).Google Scholar
21 Tambo, T., Nakamura, T., Maeda, K., Ueba, H. and Tatsuyama, C., Jpn. J. Appl. Phys. 37, p4454 (1998).Google Scholar
22 Hallmark, J., Yu, Z., Droopad, R., Ramdani, J., Curless, J., Overgaard, C., Finder, J., Marshall, D., Wang, J. and Ooms, B., Integrated Ferroelectrics 27, p41 (1999).Google Scholar
23 Sanchez-Portal, Daniel, Ordejon, Pablo, Artcho, Emilo, Soler, Jose M.; Inter J. of Quantum Chem. 65, p453 (1997).Google Scholar
24 Sankey, O. F., Niklewski, D. J., Phys Rev B 40, p3979 (1989).Google Scholar
25 Troullier, N. Martins, J. L., Phys Rev B 43, p 1993 (1991).Google Scholar
26 Wang, J., Hallmark, J. A., Marshall, D. S., Ooms, W. J., Ordejon, P., unquera, J., Sanchez-Portal, D., Artacho, E., Soler, J. M., Phys Rev B 60, p4968 (1999).Google Scholar
27 Cheng, B., Cao, M., Rao, R., Inani, A., Voorde, P., Greene, W., Stork, H., Yu, Z., Woo, J., IEEE Transaction on Electron Devices, 46, p1537 (1999).Google Scholar
28 Hauser, J.R. and Ahmed, K., “Characterization of Ultra-Thin Oxides Using Electrical C-V and I-V Measurements,” Characterization and Metrology for ULSI Technology: 1998 International Conference, p235, (1998)Google Scholar
29 Terman, L.M., Solid-State Electronics, 5, p285, (1962)Google Scholar
30 Robertson, J., Chen, C.W., “Schottky Barrier Heights of Tantalum Oxide, barium Strontium Titanate, Lead Zirconate Titanate and Strontium Bismuth Tantalate,” MRS Symposium Proceedings, Dec. (1998).Google Scholar