Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-22T21:44:45.805Z Has data issue: false hasContentIssue false

Epitaxial Island Growth and the Stranski-Krastanow Transition

Published online by Cambridge University Press:  17 March 2011

A.G. Cullis
Affiliation:
Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
D.J. Norris
Affiliation:
Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
T. Walther
Affiliation:
Institut für Anorganische Chemie, Universität Bonn, Römerstrasse 164, D-53117 Bonn, Germany
M.A. Migliorato
Affiliation:
Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
M. Hopkinson
Affiliation:
Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
Get access

Abstract

The way in which the Stranski-Krastanow epitaxial islanding transition can be controlled by strain due to elemental segregation within the initially-formed flat ‘wetting’ layer is examined in detail. Experimentally measured critical ‘wetting’ layer thicknesses for the InxGa1−xAs/GaAs system (x = 0.25 - 1) are demonstrated to show good agreement with values calculated using a segregation model. The strain energy associated with the segregated surface layer is determined for the complete range of deposited In concentrations using atomistic simulations. The segregation-mediated driving force for the Stranski-Krastanow transition is considered to be important also for all other epitaxial systems exhibiting the transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Frank, F.C. and Merwe, J.H. Van der, Proc. Roy. Soc. (London) Ser. A 198, 205 (1949).Google Scholar
2. Volmer, M. and Weber, A., Z. Physik. Chem. 119, 277 (1926).Google Scholar
3. Stranski, I.N. and Krastanow, L., Sitz. Ber. Akad. Wiss., Math.-naturwiss. Kl. Abt. IIb 146, 797 (1938).Google Scholar
4. Venables, J.A., Spiller, G.D.T., and Hanbrücken, M., Rep. Prog. Phys. 47, 399 (1984).Google Scholar
5. Glas, F., Guille, C., Hénoc, P. and Houzay, F., in Microscopy of Semiconducting Materials 1987, edited by Cullis, A.G. and Augustus, P.D. (IOP, Bristol, 1987), p. 71.Google Scholar
6. Guha, S., Madhukar, A., and Rajkumar, K.C., Appl. Phys. Lett. 57, 2110 (1990).Google Scholar
7. Snyder, C.W., Orr, B.G., Kessler, D. and Sander, L.M., Phys. Rev. Lett. 66, 3032 (1991).Google Scholar
8. Leonard, D., Krishnamurthy, M., Reaves, C.M., DenBaars, S.P. and Petroff, P.M., Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
9. Moison, J.M., Houzay, F., Barthe, F., Leprince, L. André, E. and Vatel, O., Appl. Phys. Lett. 64, 196 (1994).Google Scholar
10. Cullis, A.G., Pidduck, A.J., and Emeny, M.T., J. Crystal Growth 158, 15 (1996).Google Scholar
11. Ramachandran, T.R., Heitz, R., Kobayashi, N.P., Kalburge, A., Yu, W., Chen, P. and Madhukar, A., J. Crystal Growth 175/176, 216 (1997).Google Scholar
12. Carlsson, N., Seifert, W., Petersson, A., Castrillo, P., Pistol, M.-E. and Samuelson, L. Appl. Phys. Lett. 65, 3093 (1994).Google Scholar
13. Petroff, P.M. and DenBaars, S.P., Superlatt. Microstruct. 15, 15 (1994).Google Scholar
14. Bennett, B.R., Shanabrook, B.V., Thibado, P.M., Whitman, L.J. and Magno, R., J. Crystal Growth 175/176, 888 (1997).Google Scholar
15. Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
16. Mo, Y.-W., Savage, D.E., Swartzentruber, B.S. and Lagally, M.G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar
17. Goldfarb, I. and Briggs, G.A.D., J. Crystal Growth 198/199, 1032 (1999).Google Scholar
18. Jesson, D.E., Kästner, M. and Voigtländer, B., Phys. Rev. Lett. 84, 330 (2000).Google Scholar
19. Tromp, R.M., Ross, F.M. and Reuter, M.C., Phys. Rev. Lett. 84, 4641 (2000).Google Scholar
20. Ratsch, C. and Zangwill, A., Surf. Sci. 293, 123 (1993).Google Scholar
21. Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
22. Shchukin, V.A., Ledentsov, N.N., Kop'ev, P.S. and Bimberg, D., Phys. Rev. Lett. 75, 2968 (1995).Google Scholar
23. Priester, C. and Lannoo, M., Phys. Rev. Lett. 75, 93 (1995).Google Scholar
24. Chen, Y. and Washburn, J., Phys. Rev. Lett. 77, 4046 (1996).Google Scholar
25. Dobbs, H.T., Vvedensky, D.D., and Zangwill, A., Appl. Surf. Sci. 123/124, 646 (1998).Google Scholar
26. Tersoff, J., Phys. Rev. Lett. 81, 3183 (1998).Google Scholar
27. Nakajima, K., J. Crystal Growth 203, 376 (1999).Google Scholar
28. Walther, T., Cullis, A.G., Norris, D.J., and Hopkinson, M., Phys. Rev. Lett. 86, 2381 (2001).Google Scholar
29. Walther, T., Cullis, A.G., Norris, D.J., and Hopkinson, M., in Microscopy of Semiconducting Materials, edited by Cullis, A.G. and Hutchison, J.L. (IOPP, Bristol, 2001) p. 85.Google Scholar
30. Fukatsu, S., et al. Appl. Phys. Lett. 59, 2103 (1991).Google Scholar
31. Dehaese, O., Wallart, X., and Mollot, F., Appl. Phys. Lett. 66, 52 (1995).Google Scholar
32. Godbey, D.J. and Ancona, M.G., J. Vac Sci. Technol. B 11, 1392 (1993).Google Scholar
33. Tersoff, J., Phys. Rev. Lett. 56, 632 (1986).Google Scholar
34. Tersoff, J., Phys. Rev. B 39, 5566 (1989).Google Scholar
35. Migliorato, M.A., Cullis, A.G., Fearn, M. and Jefferson, J.H., Phys. Rev. B 65, 115316 (2002).Google Scholar
36. Joyce, B.A., Vvedensky, D.D., Bell, G.R., Belk, J.G., Itoh, M. and Jones, T.S., Mats. Sci. Eng. B67, 7 (1999).Google Scholar
37.OXON code derived by Materials Dept, Oxford University.Google Scholar
38. Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: Theory of Elasticity (Pergamon, Oxford, 1986) 7.Google Scholar
39. Migliorato, M.A., Cullis, A.G., Fearn, M. and Jefferson, J.H., Physica E (2002) in press.Google Scholar
40. Cullis, A.G., Robbins, D.J., Pidduck, A.J. and Smith, P.W., J. Crystal Growth 123, 333 (1992).Google Scholar