Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T13:30:31.388Z Has data issue: false hasContentIssue false

Epitaxial Growth of Transition Metal Silicides on Silicon

Published online by Cambridge University Press:  26 February 2011

L. J. Chen
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
H. C. Cheng
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
W. T. Lin
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
Get access

Abstract

Recent progresses in the epitaxial growth of refractory metal suicides, FeSi2 and manganese suicides on silicon are reviewed.

The formation and structures of epitaxial suicides are described. Factors affecting the suicide epitaxy are examined. The lattice match criteria for the growth of epitaxial suicides are assessed. The effects of anharmonicity in the interatomic force of overlayer on the heteroepitaxial growth and pseudomorphism are discussed. The properties and possible applications of epitaxial suicides are summarized. Prospects for the study of epitaxial suicides are addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.

References

REFERENCES

1. Tu, K.N. and Mayer, J.W., in Thin Films — Interdiffusion and Reactions, edited by Poate, J.M., Tu, K.N., and Mayer, J.W. (Wiley, New York, 1978), p. 359.Google Scholar
2. Nicolet, M.A. and Lau, S.S., in Materials and Process Characterization, edited by Einspruch, N.G. and Larrabee, G.B. (Academic, New York, 1983), p. 329.Google Scholar
3. Koster, U., Ho, P.S., and Lewis, J.E., J. Appl. Phys. 53, 7436 (1982).Google Scholar
4. Saitoh, S., Ishiwara, H., Asano, T., and Furukawa, S., Jpn. J. Appl. Phys. 20, 1649 (1981).Google Scholar
5. Furukawa, S. and Ishiwara, H., Jpn. J. Appl. Phys. Suppl. 22–1, 21 (1983).Google Scholar
6. Tung, R.T., Poate, J.M., Bean, J.C., Gibson, J.M., and Jacobson, D.C., Thin Solid Films, 93, 77 (1982).Google Scholar
7. Tung, R.T., Phys. Rev. Lett. 52, 461 (1984).Google Scholar
8. Saitoh, S., Ishiwara, H., and Furukawa, S., Appl. Phys. Lett. 37, 223 (1980).Google Scholar
9. Hensel, J.C., Levi, A.F.J., Tung, R.T., and Gibson, J.M., Appl. Phys. Lett. 47, 151 (1985).Google Scholar
10. Hikosaka, K., Ishiwara, H. and Furukawa, S., J. Vac. Sci. Technol. 16, 1913 (1979).Google Scholar
11. Harrison, T.R., Johnson, A.M., Tien, P.K., and Dayem, A.H., Appl. Phys. Lett. 41, 734 (1982).Google Scholar
12. Kawamu, T., Shinoda, D., and Muta, H., Appl. Phys. Lett. 11, 101 (1967).Google Scholar
13. Buckley, W.D. and Moss, S.C., Solid State Electron. 15, 1331 (1972).Google Scholar
14. Tu, K.N., Alessandrini, E.I., Chu, W.K., Kräutle, H., and Mayer, J.W., Jpn. J. Appl. Phys. 2, Suppl.2–1, 669 (1974).Google Scholar
15. van Gurp, G.J. and Langereis, C., J. Appl. Phys. 46, 4301 (1975).Google Scholar
16. Cheng, H.C., Chen, L.J., and Your, T.R., Mater. Res. Soc. Symp. Proc. 25, 441 (1984).Google Scholar
17. Cheng, H.C., Yew, T.R., and Chen, L.J., J. Appl. Phys. 57, 5246 (1985).Google Scholar
18. Cheng, H.C., Yew, T.R., and Chen, L.J., Appl. Phys. Lett. 47, 128 (1985).Google Scholar
19. Shiau, F.Y., Cheng, H.C. and Chen, L.J., Appl. Phys. Lett. 45, 524 (1984).Google Scholar
20. Chien, C.J., Cheng, H.C., Nieh, C.W., and Chen, L.J., J. Appl. Phys. 57, 1877 (1985).Google Scholar
21. Cheng, H.C., Chien, C.J., Shiau, F.Y., and Chen, L.J., Appl. of Surf. Sci. 22/23, 512 (1985).Google Scholar
22. Cheng, H.C. and Chen, L.J., Appl. Phys. Lett. 46, 562 (1985).Google Scholar
23. Lin, W.T. and Chen, L.J., Appl. Phys. Lett. 46, 1061 (1985).Google Scholar
24. Lin, W.T. and Chen, L.J., J. Appl. Phys. 58, 1515 (1985).Google Scholar
25. Fung, M.S., Cheng, H.C., and Chen, L.J., Appl. Phys. Lett. 47 (In Press).Google Scholar
26. Lian, Y.C. and Chen, L.J., Appl. Phys. Lett. 48 (In Press).Google Scholar
27. Chu, J.J., Chang, Y.S., and Chen, L.J., this proceedings.Google Scholar
28. Casey, J.J., Verderber, R.R., and Garnache, R.R., J. Electrochem. Soc. 114, 201 (1967).Google Scholar
29. Hashimoto, N. and Koga, Y., J. Electrochem. Soc. 114, 1189 (1967).Google Scholar
30. Perio, A., Torres, J., Bomchil, G., d'Avitaya, F.A., and Pantel, R., Appl. Phys. Lett. 45, 857 (1984).Google Scholar
31. Chang, C.S., Cheng, H.C., Cheng, J.Y., Guan, H., Lian, Y.C., Liang, J.M., Lin, W.T., Lu, S.W., Wu, I.C., and Chen, L.J., unpublished work.Google Scholar
32. Oura, K., Okada, S., and Hanawa, T., Proc. of the 8th Intern. Vacuum Congress, edited by Abeles, F. and Croset, J. (Cannes, France, 1981), p. 181.Google Scholar
33. Chen, L.J., Cheng, H.C., Lin, W.T., Chou, L.J., and Fung, M.S., Proc. Mat. Res. Soc. Symp. 37, 375 (1985).Google Scholar
34. Lin, W.T. and Chen, L.J., J. Appl. Phys. 59 (In Press).Google Scholar
35. d'Heurle, F.M., Petersson, C.S., and Tsai, M.Y., J. Appl. Phys. 51, 5976 (1980).Google Scholar
36. Markov, I. and Milchev, A., Surface Sci. 136, 519 (1984).Google Scholar
37. Murarka, S.P., J. Vac. Sci. Technol. 17, 775 (1980).Google Scholar
38. Zur, A., McGill, T.C., and Nicolet, M.A., J. Appl. Phys. 57, 600 (1985).Google Scholar
39. Hung, L.S., Lau, S.S., Von Alimén, M., Mayer, J.W., Ullrich, B.M., Baker, J.E., Williams, P., and Tseng, W.F., Appl. Phys. Lett. 37, 909 (1980).Google Scholar
40. Foti, G., Bean, J.C., Poate, J.M., and Magee, C.W., Appl. Phys. Lett. 36, 840 (1980).Google Scholar