Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:31:02.300Z Has data issue: false hasContentIssue false

Epitaxial Growth of α-Fe(111) ON Si(111) Studied by X-RAY Diffraction and Transmission Electron Microscopy

Published online by Cambridge University Press:  25 February 2011

Yang-Tse Cheng
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090-9055
Yen-Lung Chen
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090-9055
M. M. Karmarkar
Affiliation:
Wayne State University, Detroit, Michigan 48202
Wen-Jin Meng
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090-9055
Get access

Abstract

Epitaxial α-Fe films have been grown on Si(111) substrates at 30 and 320°C by electron beam evaporation in an ultra high vacuum environment to a thickness between a few hundred and several thousand Angstroms. Conventional θ – 2θ x-ray diffraction and transmission electron microscopy show that the α-Fe films are oriented with the Fe(1ll) plane parallel to the Si(111) plane and with the Fe[110] direction parallel to the Si[110] direction in the plane of the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.see e.g., Epitazial Growth, edited by Matthews, J. W. (Academic Press, New York, 1975).Google Scholar
2. Markow, I. and Stoyanow, S., Contemp. Phys. 28, 276 (1987).Google Scholar
3. Suntola, T., Materials Science Reports 4, 261 (1989).Google Scholar
4. Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, C. P., Geis, M. W., Harbison, J. P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852 (1990).CrossRefGoogle Scholar
5. Prinz, G. A., Science 250, 1092 (1990).Google Scholar
6. Herman, M. A., Vacuum 42, 61 (1991).CrossRefGoogle Scholar
7. Kato, M., Wada, M., Sato, A., and Mori, T., Acta Metall. 37, 749 (1989).Google Scholar
8. Youdou, Zheng, Rong, Zhang, Yong, Yan, Dung, Feng, Kim, T. W., and MeCombe, B. D., Appl. Phys. A 50, 237 (1990).Google Scholar
9. Kennou, S., Cherief, N., Cinti, R. C., and Tan, T. A. Nguyen, Surf. Sci. 211/212, 685 (1989).Google Scholar
10. Cherief, N., D'Anterroches, C., Cinti, R. C., Tan, T. A. Nguyen, and Derrien, J., Appl. Phys. Lett. 55, 1671 (1989).Google Scholar
11. Mahan, J. E., Geib, K. M., Robinson, G. Y., Long, R. G., Xinghua, Y., Bai, G., Nicolet, M.-A., Nathan, M., Appl. Phys. Lett. 56, 2126 (1990).Google Scholar
12. Ridgway, J. W. T. and Haneman, D., Surf. Sci. 24, 451 (1971).Google Scholar
13. Urano, T., Ogawa, T., and Kanaji, T., J. Vac. Sci. Tech. A 5, 2046 (1987).CrossRefGoogle Scholar
14.X-ray Powder Diffraction File No. 6–696 (JCPDS-ICDD, 1987).Google Scholar
15.X-ray Powder Diffraction File No. 27–1402 (JCPDS-ICDD, 1987).Google Scholar
16. Movchan, B. A. and Demchishin, A. V., Fizika Metall. 28, 83 (1969).Google Scholar
17. Thornton, J. A., Ann. Rev. Mater. Sci. 7, 239 (1977).Google Scholar
18. Higashi, G. S., Chabal, Y. J., Trucks, G. W., and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
19. Becker, R. S., Higashi, G. S., Chabal, Y. J., and Becker, A. J., Phys. Rev. Lett. 65, 1917 (1990).Google Scholar
20. Iyer, S. S., Arienzo, M., and Fresart, E. de, Appl. Phys. Lett. 57, 893 (1990).Google Scholar