Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:12:29.029Z Has data issue: false hasContentIssue false

Epitaxial Growth, Fabrication, and Performance of Ingaas Strained Quantum Well Laser Structures

Published online by Cambridge University Press:  22 February 2011

W. S. Hobson*
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

There is considerable interest in InGaAs/GaAs strained quantum well lasers for applications within the 0.9 to 1.1 μm wavelength range, such as high power lasers for Efdoped fiber amplifiers and rare-earth-ion solid state lasers, obtaining blue-green laser emission by frequency doubling, and optoelectronic integrated circuits. Epitaxial growth of these structures by organometallic vapor phase epitaxy, molecular beam epitaxy, and gas source molecular beam epitaxy will be discussed. The relative merits of AlGaAs and InGaP cladding layers will be examined with respect to growth challenges, laser processing and performance, and device reliability. Several device structures which provide transverse and lateral confinement will be reviewed. Reduction of the transverse far-field angle, which improves fiber coupling efficiency, can be accomplished through the use of periodic index separate confinement and depressed index cladding heterostructures. The performance of ridge waveguide lasers, which require accurate control of the ridge height, can be improved through the incorporation of etch-stop layers, either InGaP or AlAs, in the AlGaAs cladding layer. Nonplanar growth over mesas etched into the substrate is a convenient method to obtain buried heterostructure lasers. Carbon-doped planar InGaAs/AlGaAs lasers, using CC14 as an extrinsic dopant, have been fabricated with an impurity-induced layer disordering process. Microcylinder lasers have been fabricated out of InGaAs/InGaP layer structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mears, R. J., Reekie, L., Jauncey, I. M., and Payne, D. N., Electron. Lett. 23 (1987) 1026.Google Scholar
2. Uehara, U., Okayasu, M., Takeshita, T., Kogure, O., Yamada, M., Shimizu, M., and Horiguchi, M., Optoelectronics 5 (1990) 71.Google Scholar
3. Mears, R. J. and Baker, S. R., Opt. Quant. Electron. 24 (1992) 517.Google Scholar
4. Durteste, Y., Monerie, M., Allain, J. Y., and Poignant, H., Electron. Lett. 27 (1991) 626.Google Scholar
5. Lobbett, R., Wyatt, R., Eardley, P., Whitley, T. J., Smith, P., Szebesta, D., Carter, S. F., Davey, S. T., Millar, C. A., and Brierley, M. C., Electron. Lett. 27 (1991) 1472.Google Scholar
6. Mita, Y., Wang, Y., and Shionaya, S., Appl. Phys. Lett. 62 (1993) 802.Google Scholar
7. Camras, M. D., Brown, J. M., Holonyak, N. Jr., Nixon, M. A., Kaliski, R. W., Ludowise, M. J., Dietze, W. T., and Lewis, C. R., J. Appl. Phys. 54 (1983) 6183.Google Scholar
8. Kolbas, R. M., Anderson, N. G., Laidig, W. D., Sin, Y., Lo, Y. C., Hsieh, K. Y., and Yang, Y. J., IEEE J. Quant. Electron. 24, (1988) 1605.Google Scholar
9. Okayasu, M., Takeshita, T., Yamada, M., Kogure, O., Horiguchi, M., Fukuda, M., Kozen, A., Oe, K., and Uehara, S., Electron. Lett. 25 (1989) 1563.Google Scholar
10. Welch, D. F., Streifer, W., Schaus, C.F., Sun, S., and Gourley, P. L., Appl. Phys. Lett. 56 (1990) 10.Google Scholar
11. Gomyo, A., Kobayashi, K., Kawata, S., Itino, I., Suzuki, T., and Yuasa, T., J. Cryst. Growth 77 (1986) 367.Google Scholar
12. Cao, D. S., Reihlen, E. H., Chen, G. S., Kimball, A. W., and Stringfellow, G. B., J. Cryst. Growth 109 (1991) 279.Google Scholar
13. Wang, T. Y., Welch, D. F., Scrifres, D. R., Treat, D. W., Bringans, R. D., Street, R. A., and Anderson, G. B., Appl. Phys. Lett. 60 (1992) 1007.Google Scholar
14. Minagawa, S., Kondow, M., and Kakibayashi, H., Electron. Lett. 25 (1989) 1439.Google Scholar
15. Watanabe, M., Rennie, J., Okajima, M., and Hatakoshi, G., Electron. Lett. 29 (1993) 250.Google Scholar
16. Wang, C. A. and Choi, H. K., J. Electron. Mater. 20 (1991) 929.Google Scholar
17. Hayakawa, T., Horie, H., Nagai, M., and Niwata, Y., Appl. Phys. Lett. 62 (1993) 190.Google Scholar
18. Lothian, J. R., Kuo, J. M., Ren, F., and Pearton, S. J., J. Electron. Mater. 21 (1992)441.Google Scholar
19. Choi, H. K. and Wang, C. A., Appl. Phys.Lett. 57 (1990) 321.Google Scholar
20. Williams, R. L., Dion, M., Chatenoud, F., and Dzurko, K., Appl. Phys. Lett. 58 (1991) 1816.Google Scholar
21. Lockwood, H.F., Kressel, H., Sommers, H. S., and Hawrylo, F. Z., Appl. Phys. Lett. 17 (1970)499.Google Scholar
22. Dutta, N. K., Lopata, J., Berger, P. R., Sivco, D. L., and Cho, A. Y., Electron. Lett. 27 (1991)680.Google Scholar
23. Wu, M. C., Chen, Y. K., Hong, M., Mannaerts, J. P., Chin, M. A., and Sergent, A. M., Appl. Phys. Lett. 59 (1991) 1046.Google Scholar
24. Chen, Y. K., Wu, M. C., Hobson, W. S., Pearton, S. J., Sergent, A. M., and Chin, M. A., IEEE Photon. Tech. Lett. 3 (1991) 406.Google Scholar
25. Hobson, W. S., Wu, M. C., Chen, Y. K., Chin, M. A., Geva, M., and Jones, K. S., Appl. Phys. Let. 60 (1992) 592.Google Scholar
26. Chen, Y. K., Wu, M. C., Hobson, W. S., Chin, M. A., Choquette, K. D., Freund, R. S., and Sergent, A. M., Appl. Phys. Len. 59 (1991) 2784.Google Scholar
27. Cockerill, T. M., Honig, J., DeTemple, T. A., and Coleman, J. J., Appl. Phys. Lett. 59 (1991) 2694.Google Scholar
28. Elman, B., Sharfin, W. F., Crawford, F. D., Rideout, W. C., Lacourse, J., and Lauer, R. B., Electron. Lett. 27 (1991) 2032.Google Scholar
29. Hobson, W. S., Chen, Y. K., and Wu, M. C., Semicond. Sci. Technol. 7 (1992) 1425.Google Scholar
30. Ou, S.S., Yang, J. J., Jansen, M., Hess, C., Sergant, M., Tu, C., Alvarez, F., and Lembo, L. J., Electron. Lett. 28 (1992) 2345.Google Scholar
31. Chen, T. R., Eng, L. E., Zhuang, Y. H., Xu, Y. J., Zaren, H., and Yariv, A., Appl. Phys. Lett. 26 (1990) 2763.Google Scholar
32. Eng, L. E., Chen, T. R., Sanders, S., Zhuang, Y. H., Zhao, B., Yariv, A., and Morkoc, H., Appl. Phys. Lett. 55 (1989) 1378.Google Scholar
33. Liou, D. C., Chiang, W. H., Lee, C. P., Chang, K. H., Liu, D. G., Wu, J. S., and Tu, Y. K., J. Appl. Phys. 71 (1992) 1525.Google Scholar
34. Xiao, J. W., Xu, J. Y., Yang, G. W., J. M. 2hang, Xu, Z. T., and Chen, L. H., Electron. Lett. 28 (1992) 154.Google Scholar
35. York, P. K., Beernink, K. J., Fernandez, G. E., and Coleman, J. J., Semicond. Sci. Technol. 5 (1990) 508.Google Scholar
36. Lopata, J., Dutta, N. K., Hobson, W. S., and Berger, P. R., SPIE Vol. 1675 (1992) 117.Google Scholar
37. Yoshikawa, A., Yamamoto, A., Hirose, M., Sugino, T., Kano, G., and Teramota, I., IEEE J. Quant. Electron. QE–25 (1987) 725.Google Scholar
38. Dzurko, K. M., Menu, E. P., Beyler, C. A., Osinski, J. S., and Dapkus, P. D., IEEE J. Quant. Electron. 25 (1989) 1450.Google Scholar
39. Hersee, S. D., Barbier, E., and Blondeau, R., J. Cryst. Growth 77 (1986) 310.Google Scholar
40. Frateschi, N. C., Osinski, J. S., Beyler, C. A., and Dapkus, P. D., IEEE Photon. Tech. Lett. 4 (1992) 209.Google Scholar
41. Arent, D. J., Brovelli, L., JMickel, H., Marclay, E., and Meier, H. P., Appl. Phys. Lett. 56 (1990)1939.Google Scholar
42. Takamori, T., Watanabe, K., and Kamijoh, T., Electron. Lett. 28 (1992) 1419.Google Scholar
43. Takamori, T., Sin, Y. K., Watanabe, K., and Kamijoh, T., Appl. Phys. Lett. 61 (1992) 2266.Google Scholar
44. Laidig, W. D., Holonyak, N. Jr., Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D., and Bardeen, J., Appl. Phys. Lett. 38 (1981) 776.Google Scholar
45. Major, J. S. Jr., Guido, L. J., Hsieh, K. C., Holonyak, N. Jr., Stutius, W., Gavrilovic, P., and Williams, J. E., Appl. Phys. Lett. 54 (1989) 913.Google Scholar
46. Major, J. S. Jr., Hall, D. C., Guido, L. J., Holonyak, N. Jr, Gavrilovic, P., Meehan, K., Williams, J. E., and Stutius, W., Appl. Phys. Lett. 55 (1989) 271.Google Scholar
47. Major, J. S. Jr., Plano, W. E., Welch, D. F., and Scifres, D., Electron. Lett. 27 (1991) 539.Google Scholar
48. Szafranek, I., Major, J. Jr., Cunningham, B. T., Guido, L. J., Holonyak, J. Jr., and Stillman, G. E., Appl. Phys. Lett. 57 (1990) 2910.Google Scholar
49. Hobson, W. S., Pearton, S. J., Ren, F., Cheng, Y., Kozuch, D. M., Stavola, M., and Geva, M., Mater. Sci. Eng. B (in press).Google Scholar
50. Bylsma, R.B., Hobson, W. S., Geva, M., Trevor, D., and Pearton, S. J. (unpublished).Google Scholar
51. Neuse, C. J., Olsen, G. H., and Ettenberg, M., Appl. Phys. Lett. 29 (1976) 54.Google Scholar
52. Alferov, Zh.I., Yu, N., Antonishkis, Arsent'ev, I. N., Garbuzov, D. Z., Kolyshkin, V. I., Nalet, T. A., Strugov, N. A., and Tikunov, A. V., Sov. Phys. Semicond. 22 (1988) 650.Google Scholar
53. Garbuzov, D. Z., Tikunov, A. V., Zihgulin, S. N., Sokolova, Z. N., and Khalfin, V. B., Soy. Phys. Semicond. 22 (1988) 653.Google Scholar
54. Ijichi, T., Ohkubo, M., Matsumoto, N., and Okamoto, H., Tech. Dig. IEEE 12th Int. Semiconductor Laser Conf. 1990 Davos, Switzerland, p. 4445.Google Scholar
55. Kuo, J. M., Wu, M. C., Chen, Y. K., Chin, M. A., and Sergent, A. M., SPIE Vol. 1634 (1992) 361.Google Scholar
56. Kuo, J. M., Chen, Y. K., Wu, M. C., and Chin, M. A., Appl. Phys. Lett. 59 (1991) 2781.Google Scholar
57. Wu, M. C., Chen, Y. K., Kuo, J. M., Chin, M. A., and Sergent, A. M., IEEE Photon. Tech. Lett. 4 (1992) 676.Google Scholar
58. Fu, R. J., Hong, C. S., Chan, E. Y., Booher, D. J., and Figueroa, L., IEEE Photon. Technol. Lett. 3 (1991) 308.Google Scholar
59. Liau, Z. L., Palmateer, S. C., Groves, S. H., Walpole, J. N., and Missaggia, L. J., Appl. Phys. Lett. 60 (1992) 6.Google Scholar
60. Groves, S. H., Walpole, J. N., and Missaggia, L. J., Appl. Phys. Lett. 61 (1992) 255.Google Scholar
61. Zhang, G., Nippi, J., Ovtchinnikov, A., Savdainen, P., and Asonen, H., Electron Lett. 28 (1992) 2171.Google Scholar
62. Sagawa, M., Hiramoto, K., Tsuchiya, T., Tsuji, S., and Uomi, K., Electron. Lett. 28 (1992) 1639.Google Scholar
63. Ohkubo, M., Ijichi, T., Iketani, A., and Kikuta, T., Electron. Lett. 28 (1992) 1149.Google Scholar
64. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J., and Logan, R. A., Appl. Phys. Lett. 60 (1992) 289.Google Scholar
65. Levi, A. F. J., Slusher, R. E., McCall, S. L., Tanbun-Ek, T., Coblentz, D. L., and Pearton, S. J., Electron. Lett. 28 (1992) 1010.Google Scholar
66. Levi, A. F. J., Slusher, R. E., McCall, S. L., Glass, J. L., Pearton, S. J., and Logan, R. A., Appl. Phys. Lett. 62 (1993) 561.Google Scholar
67. Levi, A. F. J., Slusher, R. E., McCall, S. L., Pearton, S. J., and Hobson, W. S. (unpublished results).Google Scholar
68. Levi, A. F. J., Pearton, S. J., and Hobson, W. S. (unpublished results).Google Scholar
69. Fischer, S. E., Waters, R. G., Fekete, D., Ballantyne, J. M., Chen, Y. C., and Soltz, B. A., Appl. Phys. Lett. 54 (1989) 1861.Google Scholar
70. Waters, R. G., Bour, D. P., Yellen, S. L., and Ruggieri, N. F., IEEE Photon. Tech. Lett. 2 (1990)531.Google Scholar
71. Hansmann, S., Burkhard, H., Dahlhof, K., Schlapp, W., Lbsch, R., Nickel, H., and Hillmer, H., J. Lightwave Technol. 10 (1992) 620.Google Scholar
72. Cockerill, T. M., Honig, J., Forbes, D. V., and Coleman, J. J., Appl. Phys. Lett. 62 (1993) 820.Google Scholar
73. Sin, Y. K., Horikawa, H., Nakajima, M., and Kamijoh, T., Electron. Lett. 29 (1993) 253.Google Scholar