Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:40:48.080Z Has data issue: false hasContentIssue false

Epitaxial Growth and Luminescence Characterization of Si-based Double Heterostructures Light-emitting Diodes with Iron Disilicide Active Region

Published online by Cambridge University Press:  01 February 2011

Takashi Suemasu
Affiliation:
[email protected], University of Tsukuba, Institute of Applied Physics, 1-1-1 Tennohdai, Tsukuba, 3058573, Japan
Cheng Li
Affiliation:
[email protected], University of Tsukuba, Institute of Applied Physics, 1-1-1 Tennohdai, Tsukuba, 3058573, Japan
Tsuyoshi Sunohara
Affiliation:
[email protected], Xiamen University, Department of Physics, Xiamen, 361005, China, People's Republic of
Yuta Ugajin
Affiliation:
[email protected], University of Tsukuba, Institute of Applied Physics, Ibaraki, 305-8573, Japan
Ken'ichi Kobayashi
Affiliation:
[email protected], University of Tsukuba, Institute of Applied Physics, Ibaraki, 305-8573, Japan
Shigemitsu Murase
Affiliation:
[email protected], University of Tsukuba, Institute of Applied Physics, Ibaraki, 305-8573, Japan
Fumio Hasegawa
Affiliation:
[email protected], University of Tsukuba, Institute of Applied Physics, Ibaraki, 305-8573, Japan
Get access

Abstract

We have epitaxially grown Si/β-FeSi2/Si (SFS) structures with β-FeSi2 particles or β-FeSi2 continuous films on Si substrates by molecular beam epitaxy (MBE), and observed 1.6 μm electroluminescence (EL) at room temperature (RT). The EL intensity increases with increasing the number of β-FeSi2 layers. The origin of the luminescence was discussed using time-resolved photoluminescence (PL) measurements. It was found that the luminescence originated from two sources, one with a short decay time (τ∼10 ns) and the other with a long decay time (τ∼100 ns). The short decay time was due to carrier recombination in β-FeSi2, whereas the long decay time was due probably to a defect-related D1 line in Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Leong, D., Harry, H., Reeson, K. J., and Homewood, K. P., Nature 387, 686 (1997).Google Scholar
2. Suemasu, T., Negishi, Y., Takakura, K., and Hasegawa, F., Jpn. J. Appl. Phys. Part 2 39, L1013 (2000).Google Scholar
3. Little, B. E., Forsi, J. S., Steinmeyer, G., Thoen, E. R., Chu, S. T., Haus, H. A., Ippen, E. P., Kimerling, L. C., and Greece, W., IEEE Photonics Technol. Lett. 10, 549 (1998).Google Scholar
4. Sakai, A., Hara, G., and Baba, T., Jpn. J. Appl. Phys. 40, L383 (2001).Google Scholar
5. Lourenco, M. A., Butler, T. M., Kewell, A. K., Gwilliam, R M., Kirkby, K. J., and Homewood, K. P., Jpn. J. Appl. Phys. Part 1 40, 4041 (2001).Google Scholar
6. Suemasu, T., Negishi, Y., Takakura, K., and Hasegawa, F., Appl. Phys. Lett. 79, 1804 (2001).Google Scholar
7. Martinelli, L., Grilli, E., Guzzi, M., and Grimaldi, M. G., Appl. Phys. Lett. 83, 794 (2003).Google Scholar
8. Chu, S., Hirohada, T., Nakajima, K., Kan, H., and Hiruma, T., Jpn. J. Appl. Phys. Par2 41, L1200 (2002).Google Scholar
9. Takauji, M., Li, C., Suemasu, T., and Hasegawa, F., Jpn. J. Appl. Phys. Part 1 44, 2483 (2005).Google Scholar
10. Sunohara, T., Li, C., Ozawa, Y., Suemasu, T., and Hasegawa, F., Jpn. J. Appl. Phys. Part 1 44, 3951 (2005).Google Scholar
11. Li, C., Suemasu, T., and Hasegawa, F., J. Appl. Phys. 97, 043529 (2005).Google Scholar
12. Li, C., Suemasu, T., and Hasegawa, F., J. Lumine. 118, 330 (2006).Google Scholar
13. Terai, Y., and Maeda, Y., Appl. Phys. Lett. 84, 903 (2004).Google Scholar
14. Ozawa, Y., Li, C., Suemasu, T., and Hasegawa, F., J. Appl. Phys. 95, 5483 (2004).Google Scholar
15. Takauji, M., Li, C., Suemasu, T., Hasegawa, F., and Ichida, M., J. Appl. Phys. 96, 2561 (2004).Google Scholar
16. Chu, S., Hirohada, T., Kan, H., and Hiruma, T., Jpn. J. Appl. Phys. Part 2 43, L154 (2004).Google Scholar
17. Suemasu, T., Tanaka, M., Fujii, T., Hashimoto, S., Kumagai, Y., and Hasegawa, F., Jpn. J. Appl. Phys. 36, L1225 (1998).Google Scholar
18. Takakura, K., Ohyama, H., Takarabe, K., Suemasu, T., and Hasegawa, F., J. Appl. Phys. 97, 093716 (2005).Google Scholar
19. Sunohara, T., Kobayashi, K., and Suemasu, T., Thin Solid Films 508, 371 (2006).Google Scholar
20. Mahan, J. E., Geib, K. M., Robinson, G. Y., Long, E. G., Yan, X., Bai, G., Nicolet, M. A., and Nathan, M., Appl. Phys. Lett. 56, 2126 (1990).Google Scholar
21. Tanaka, M., Kumagai, Y., Suemasu, T., and Hasegawa, F., Jpn. J. Appl. Phys. 36, 3620 (1997).Google Scholar
22. Li, C., Ohtsuka, T., Ozawa, Y., Suemasu, T., and Hasegawa, F., J. Appl. Phys. 94, 1518 (2003).Google Scholar
23. Sauer, R., Weber, J., Stolz, J., Weber, E., Kusters, K., and Alexander, H., Appl. Phys. A 36, 1 (1985).Google Scholar
24. Spinella, C., Coffa, S., Bongiorno, C., Pannitteri, S., and Grimaldi, M. G., Appl. Phys. Lett. 76, 173 (2000).Google Scholar
25. Schuller, B., Carius, R., and Mantl, S., J. Appl. Phys. 94, 207 (2003).Google Scholar
26. Fukatsu, S., Mera, Y., Inoue, N., Maeda, K., Akiyama, H., and Shiraki, H., Appl. Phys. Lett. 68, 1889 (1996).Google Scholar
27. Han, M., Tanaka, M., Takeguchi, M., Zhang, Q., and Furuya, K., J. Cryst. Grwoth 255, 93 (2003).Google Scholar
28. Lee, T. P., and Dentai, A. D., IEEE J. Quantum Electron. 14, 150 (1978).Google Scholar
29. Yamamoto, K., Kohno, H., Takeda, S., and Ichikawa, S., Appl. Phys. Lett. 89, 083107 (2006).Google Scholar