Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-10-28T02:08:13.194Z Has data issue: false hasContentIssue false

Epitaxial Crystallisation of Doped Amorphous Silicon

Published online by Cambridge University Press:  25 February 2011

R.G. Elliman
Affiliation:
Joint Appointment with CSIRO, Division of Chemical Physics, Clayton 3168, Australia.
S.T. Johnson
Affiliation:
Microelectronics Technology Centre, RMIT, Melbourne 3000, Australia
K.T. Short
Affiliation:
Microelectronics Technology Centre, RMIT, Melbourne 3000, Australia
J.S. Williams
Affiliation:
Microelectronics Technology Centre, RMIT, Melbourne 3000, Australia
Get access

Abstract

This paper outlines a model to account for the influence of doping and electronic processes on the solid phase epitaxial regrowth rate of ion implanted (100) silicon. In addition we present data which illustrates good quality epitaxial crystallisation of silicon at 400°C induced by He+ ion irradiation. We tentatively suggest that electronic energy-loss processes may be responsible for this behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Csepregi, L., Kennedy, E.F., Mayer, J.W. and Sigmon, T.W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
2. Drosd, B. and Washburn, J., J. Appl. Phys. 51, 4106 (1980).Google Scholar
3. Lietoila, A., Wakita, A., Sigmon, T.W. and Gibbons, J.F., J. Appl. Phys. 53, 4399 (1982)Google Scholar
4. Spaepen, F., Acta. Metall. 26, 1167 (1978).Google Scholar
5. Spaepen, F. and Turnbull, D., in Laser and Electron Beam Processing of Semiconductor Structures, edited by Poate, J.M. and Mayer, J.W. (Academic, New York, 1981), p. 15.Google Scholar
6. Csepregi, L., Kennedy, E.F., Gallagher, T.J., Mayer, J.W. and Sigmon, T.W.. J. Appl. Phys., 48, 4234, (1977).Google Scholar
7. Kennedy, E.F., Csepregi, L., Mayer, J.W. and Sigmon, T.W.. J. Appl. Phys. 48, 4241 (1977).Google Scholar
8. Suni, I., Goltz, G., Grimaldi, M.G., Nicolet, M.A. and Lau, S.S.. Appl. Phys. Lett. 40, 269 (1982).Google Scholar
9. Williams, J.S. and Short, K.T., Nucl. Instr. Meth. 209/210, 767 (1983).Google Scholar
10. Hirsch, P.B., J. Phys. (Paris), Colloq. 40, C6 (1979).Google Scholar
11. Williams, J.S. and Elliman, R.G.. Phys. Rev. Lett., 51,1069 (1983).Google Scholar
12. Svensson, B., Linnros, J. and Holmen, G.. Nucl. Instr. Meth., 210,755 (1983).Google Scholar
13. Nakata, J. and Kajiyama, K.. Appl. Phys. Lett. 40, 686 (1982).Google Scholar
14. Short, K.T., Chivers, D.J., Liu, J., Elliman, R.G., Pogany, A.P., Wagenfeld, H.K. and Williams, J.S., these proceedings.Google Scholar