Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T03:27:22.360Z Has data issue: false hasContentIssue false

Epitaxial CoSi2 formation by a Cr or Mo interlayer

Published online by Cambridge University Press:  14 March 2011

C. Detavernier
Affiliation:
Vakgroep Vaste Stofwetenschappen, Universiteit Gent, Krijgslaan 281/S1, B-9000 Gent, Belgium
R.L. Van Meirhaeghe
Affiliation:
Vakgroep Vaste Stofwetenschappen, Universiteit Gent, Krijgslaan 281/S1, B-9000 Gent, Belgium
F. Cardon
Affiliation:
Vakgroep Vaste Stofwetenschappen, Universiteit Gent, Krijgslaan 281/S1, B-9000 Gent, Belgium
K. Maex
Affiliation:
also at E.E. Dept, K.U. Leuven, B-3001 Leuven, Belgium
B. Brijs
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
W. Vandervorst
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Get access

Abstract

We have studied CoSi2 formation in the presence of a Cr or Mo interlayer or capping layer. We shall show that, contrary to what was previously reported, Cr and Mo may be used as interlayers to grow epitaxial CoSi2. However, unlike for Ti, the thickness of the interlayer is very important. If the Cr or Mo interlayer is too thick (> 5 nm), polycrystalline CrSi2 or MoSi2 are formed first and epitaxial growth of CoSi2 becomes impossible. However, both XRD and random/channeling RBS results indicate that for a 2-3 nm interlayer of Cr or Mo, CoSi2 forms epitaxially on Si(100). For thinner interlayers, there is a preferential (220) and (400) orientation. This can be explained by the presence of Cr or Mo on the CoSi grain boundaries, which will affect the heterogeneous nucleation of CoSi2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, R.T., Schrey, F., MRS Symp. Proc. 122, 559, (1988).Google Scholar
2. Mantl, S., Bay, H.L., Appl. Phys. Lett. 61, 267, (1992).Google Scholar
3. White, A.E., Short, K.T., Dynes, R.C., Garno, J.P., Gibson, J.M., Appl. Phys. Lett. 50, 95, (1987).Google Scholar
4. Lawrence, M., Dass, A., Fraser, D.B., and Wei, C.S., Appl. Phys. Lett. 58, 1308, (1991).Google Scholar
5. Zhang, S.-L., d'Heurle, F.M., summerschool on silicides, Erice (1999).Google Scholar
6. Byun, J.S., Kim, H.J., J. Appl. Phys. 78, 6784, (1995).Google Scholar
7. Byun, J.S., Kim, W.S., Choi, M.S., Cho, H.J., Kim, H.J., MRS Proc. 320, 379, (1994).Google Scholar
8. Hong, F., Rozgonyi, G.A., J. Electrochem. Soc. 141, 3480, (1994).Google Scholar
9. Detavernier, C., Meirhaeghe, R.L. Van, Cardon, F., Maex, K., MRS Proc. Spring Meeting 2000 (also in this volume).Google Scholar