Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:53:32.215Z Has data issue: false hasContentIssue false

Epitaxial BaTiO3 Thin Films on Different Substrates for Optical Waveguide Applications

Published online by Cambridge University Press:  10 February 2011

M. Siegert
Affiliation:
Institut für Schicht- und Ionentechnik
Judit G. Lisoni
Affiliation:
Institut für Schicht- und Ionentechnik
C. H. Lei
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany, [email protected]
A. Eckau
Affiliation:
Institut für Schicht- und Ionentechnik
W. Zander
Affiliation:
Institut für Schicht- und Ionentechnik
C. L. Jia
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany, [email protected]
J. Schubert
Affiliation:
Institut für Schicht- und Ionentechnik
Ch. Buchal
Affiliation:
Institut für Schicht- und Ionentechnik
Get access

Abstract

In the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Saenger, K.L.: Processing of Advanced Materials 2 (1993) 1 Google Scholar
[2] Gill, D.M., Block, B.A., Conrad, C.W., Wessels, B.W., Ho, S. T.: Appl. Phys. Lett. 69 (1996) 2968 Google Scholar
[3] Walker, F.J., McKee, R.A.: Appl. Phys. Lett. 65 (1994) 1495 Google Scholar
[4] McKee, R.A., Walker, F.J., Chisholm, M.F.: Phys. Rev. Lett. 81 (1998) 3014 Google Scholar
[5] Barrios, P., Kim, H.K.: Appl. Phys. Lett. 73 (1998) 1017 Google Scholar
[6] Beckers, L., Schubert, J., Ziesmann, J., Eckau, A., Leinenbach, P., Buchal, Ch.: J. Appl. Phys. 83 (1998) 3305 Google Scholar
[7] Zgonik, M., Bernasconi, P., Duelli, M., Schlesser, R., Giinter, P., Garrett, M.H., Rytz, D., Zhu, Y., Wu, X.: Phhys. Rev. B 50 (1994) 5941 Google Scholar
[8] Stritzker, B., Schubert, J., Poppe, U., Zander, W., Kriiger, U., Lubig, A., Buchal, Ch.: J. Less-Common Met. 164, 165 (1990) 279 Google Scholar
[9] Crystec GmbH, Köpenicker Str. 325, D-12555 Berlin, GermanyGoogle Scholar
[10] Lei, C.H., Jia, C.L., Siegert, M., Schubert, J., Buchal, Ch., Urban, K.: J. Crys. Growth 204 (1999) 137 Google Scholar
[11] Judit Lisoni, G., Siegert, M., Lei, C.H., Schubert, J., Zander, W., Buchal, Ch.: submitted to MRS Proc. Fall 1999 BostonGoogle Scholar
[12] Wessels, B.W.: J. Crys. Growth 195 (1998) 706 Google Scholar