Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:25:48.755Z Has data issue: false hasContentIssue false

Environmental Testing of High Tc Superconductive Thermal Isolators for Space-Borne Cryogenic Detector Systems

Published online by Cambridge University Press:  26 February 2011

Stephanie A. Wise
Affiliation:
NASA-Langley Research Center Hampton, VA 23665
John D. Buckley
Affiliation:
NASA-Langley Research Center Hampton, VA 23665
Henry W. Randolf
Affiliation:
Savannah River Laboratory Aiken, SC 29808
Darren Verbelyi
Affiliation:
Savannah River Laboratory Aiken, SC 29808
Gene H. Haertling
Affiliation:
Department of Ceramic Engineering, Clemson University Clemson, SC 29634–0907
Matthew W. Hooker
Affiliation:
Department of Ceramic Engineering, Clemson University Clemson, SC 29634–0907
Raouf Selim
Affiliation:
Department of Physics and Computer Science, Christopher Newport University, Newport News, VA 23606
Randall Caton
Affiliation:
Department of Physics and Computer Science, Christopher Newport University, Newport News, VA 23606
Get access

Abstract

NASA's requirements for space-based cryogenic detector systems include the long-term storage of the liquid helium cryogen necessary for the optimized performance of far-infrared (IR) detectors. Significant heat loads on the liquid helium dewars exist due to the numerous electrical connections to the detectors, accounting for approximately 20 percent of the total heat load for some systems. High temperature superconductor lead assemblies are under development to replace the existing manganin wires connecting instruments at 80 K to the detector array at 4.2 K. These superconductive elements provide adequate current transport properties, while decreasing the thermal load on the liquid helium dewar. As a result, mission lifetimes can be extended by 10 percent or more.

Thick films of the superconductive material on low thermal conductivity substrates (e.g. yttria stabilized zirconia and fused silica) have been proposed to replace the existing lead assemblies. This work describes some of the design constraints on such a device as well as preliminary analyses of the effects of vibration, gamma irradiation, and long term exposure to high vacuum and liquid nitrogen encountered in operating such a device in space.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sherman, A., Cryogenics 23 348 (1983).Google Scholar
2. Volz, S. M., DiPirro, M. J., Castles, S. H., Rhee, M. S., Ryschkewitsch, M. G., and Hopkins, R., Proceedings of SPIE Vol. 1340, Melvgin, R. K. and Pruitt, G. R. (eds), p. 268 Google Scholar
3. Lee, J. H., Payne, D. A., and Averill, R. D., To Appear in the Proceedings of the Cryogenic Engineering Conference, Held June 11–14, 1991, Huntsville, AL.Google Scholar
4. Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, I. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
5. Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jap. J. Appl. Phys. 29 L209 (1988).Google Scholar
6. Sheng, Z. Z. and Hermann, A. M., Nature 332 55 (1988).Google Scholar
7. Uher, C., J. Superconductivity 3 337 (1990).Google Scholar
8. Nemoto, T., Sasaki, S., and Hakuraku, Y., Cryogenics 25 531 (1985).Google Scholar
9. Slack, G. A., Phys. Rev. 126 427 (1962).Google Scholar
10. Lawless, W. N. and Gupta, T. H., Phys. Rev. B 28 5507 (1983).Google Scholar
11. Koinuma, H., Hashimoto, T., Nakamura, T., Kisho, K., Kitazawa, K., and Fueki, K., Jap. J. Appl. Phys. 26 L761 (1987).Google Scholar
12. Caton, R., Selim, R., and Buoncristiani, A.M., Final Report, NASA-Langley Research Center, Grant Number NAG-1–1242.Google Scholar
13. Haertling, G. H., “Superconducting Ceramic Components,” pp. 537545 in Ceramic Transactions, Vol. 18, 1991.Google Scholar
14. Bohandy, J., Suter, J., Kim, B. F., Moorjani, K., and Adrian, F. J., Appl. Phys. Lett. 51, 2161 (1987).Google Scholar
15. Vasek, P., Smreka, L., Dominee, J., Pesek, M., Smrekova, O., and Sykorova, D., Solid State Comm. 69 23 (1989).Google Scholar
16. Kirk, M. A., Baker, M. C., Liu, J. Z., Lam, D. J., and Weber, H. W., High Temperature Superconductors, Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (eds) MRS, Pittsburgh (1988) p. 209.Google Scholar
17. Wisniewski, A., Baran, M., Przyslupski, P., Szymczak, H., Pajaczkowska, A., Pytel, B., and Pytel, K., Solid State Comm. 65 577 (1988).Google Scholar
18. Cost, J. R., Willis, J. O., Thompson, J. D., and Peterson, D. E., Phys. Rev. B 37 1563 (1988).Google Scholar
19. Clark, G. J., Marwick, A. D., Koch, R. H., and Laibowitz, R. B., Appl. Phys. Lett. 51 139 (1987).Google Scholar
20. Langton, N. H., Space Research and Technology Volume I: The Space Environment, American Elsevier Publishing Company, Inc., New York, 1969.Google Scholar