Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:48:09.312Z Has data issue: false hasContentIssue false

Environment Sensitive Embedding Energies of Impurities, and Grain Boundary Stability in Tantalum

Published online by Cambridge University Press:  10 February 2011

Genrich L. Krasko*
Affiliation:
Materials Directorate, U. S. Army Research Laboratory, AMSRL-MA-CC, Aberdeen Proving Ground, MD 21005-5069
Get access

Abstract

Metalloid impurities have a very low solubility in Tantalum, and therefore prefer to segregate at the grain boundaries (GBs). In order to analyze the energetics of the impurities on the Tantalum GB, the LMTO calculations were performed on a simple 8-atom supercell emulating a typical (capped trigonal prism) GB environment. The so-called “environment-sensitive embedding energies” were calculated for Hydrogen, Boron, Carbon, Nitrogen, Oxygen, Phosphorus, and Sulphur, as a function of the electron charge density due to the host atoms at the impurity site. The calculations showed that, at the electron density typical of a GB, Carbon has the lowest energy (followed by Nitrogen and Boron) and thus would compete with the other impurities for the site on the GB, tending to displace them from the GB. The above energies were then used in a modified Finnis-Sinclair embedded atom approach for calculating the cohesive energies and the equilibrium interplanar distances in the vicinity of a (111) Σ3tilt GB plane, both for the clean GB and that with an impurity. These distances were found to oscillate, returning to the value corresponding to the equilibrium spacing between (111) planes in bulk BCC Tantalum by the 10th-12th plane off the GB. Carbon, Nitrogen and Boron somewhat dampen the deformation wave (making the oscillations less than in the clean GB), while Oxygen, Phosphorus and Sulphur result in an increase of the oscillations. The cohesive energies follow the same trend, the GB with Carbon being the most stable. Thus, Carbon, Nitrogen and Boron may be thought of as being cohesion enhancers, while Oxygen, Phosphorus and Sulphur result in decohesion effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Briant, C. L. and Banerji, S.K. in Embrittlement of Engineering Alloys (ed. Briant, C. L. and Banerji, S.K.) , Acad. Press, New York, 1983, p. 21; M. Guttmann and D. McLean in Interfacial Segregations (ed. W.C. Johnson and J. M. Blakely), ASM, 1979, p. 261Google Scholar
2. Troiano, A. R., Trans. Am. Soc. Met., 52, 54 (1960)Google Scholar
3. Stark, J. P. and Marcus, H. L., Metall. Trans. A, 8A, 1423 (1977)Google Scholar
4. Lee, D. Y., Barrera, E. V., Stark, P. and Marcus, H. L., Metall. Trans. A, 15A, 1415 (1984)Google Scholar
5. Meyers, C. L. Jr., , Onoda, G. Y., Levy, A. V., and Kotfila, R. J., Trans. Metall. Society of AIME, 233, 720 (1965)Google Scholar
6. Seah, M. P., J. Phys. F 10, 1043 (1980)Google Scholar
7. Wu, R., Freeman, A. J., and Olson, G. B., J. Mater. Res. 7, 2403 (1992); Phys. Rev. B47, 6855 (1993): R. Wu and A. J. Freeman, Phys. Rev. B47, 3904 (1993); R. Wu, A. J. Freeman, and G. B. Olson, Phys. Rev. B50, 75 (1994); A. J. Freeman and R. Wu, Science, 265, 376 (1994)Google Scholar
8. Krasko, G. L. and Olson, G. B., Solid State Commun., 76, 247 (1990); G. L. Krasko, in Structure and Properties of Interfaces in Materials (ed. W. A. T. Ctark, U. Dahmen, and C. L. Briant), Mat. Res. Soc. Symp. Proc. 238, Pittsburgh, PA (1992), p. 481; G. L. Krasko, in Defect-Interface Interactions (eds. J. Broughton, P. Bristow, and J. Newman), Mat. Res. Soc. Symp. Proc. 291, Pittsburgh, PA (1993), p. 109Google Scholar
9. Krasko, G. L. and Olson, G. B., Solid State Commun., 79, 113 (1991)Google Scholar
10. Krasko, G. L., Scripta Metall et Mater. 28, 1543 (1993); G. L. Krasko, Int. J. Refractory Metals & Hard materials, 12, 251 (1994)Google Scholar
11. Daw, M. S., Phys. Rev., B 39, 7441 (1989); M. S. Daw and M. I. Baskes, B29, 6443 (1984)Google Scholar
12. Finnis, M. W. and Sinclair, J. E., Phil. Mag., AS 0, 45 (1984); A53, 161 (1986)Google Scholar
13. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett., 50, 1285 (1983); M. S. Daw and M. I Baskes, in Chemistry and Physics of Fracture (ed. R. H. Jones and R. M. Latanision), Martinus Nijhoff, 1987, p. 196Google Scholar
14. Norskov, J. K. and Lang, N. D., Phys. Rev., B 21, 2136 (1980)Google Scholar
15. Stott, M. J. and Zaremba, D. M., Phys. Rev., B 22, 1564 (1980)Google Scholar
16. Puska, M. J., Nieminen, R. M., and Manninen, M., Phys. Rev., B 24, 3037 (1981)Google Scholar
17. Stott, M. J. and Zaremba, F., Can. J. Phys, 60, 1145 (1982)Google Scholar
18. Norskov, J. K., Phys. Rev., B 26, 2875 (1982)Google Scholar
19. Jacobsen, K. W., Norskov, J. K. and Puska, M. J., Phys. Rev., B 35, 7423 (1987)Google Scholar
20. Raeker, T. J. and DePristo, A. E., Surface Sci., 235, 84 (1990) and references thereinGoogle Scholar
21. Chetty, N., Jacobsen, K. W., and Norskov, J. K., Lett. J. Phys., Condens. Matter, 3, 5437 (1991); N. Chetty, K. Stokboro, K. W. Jacobsen, and J. K. Norskov, Phys. Rev. B46, 3798 (1992)Google Scholar
22. Ashby, M. F., Spaepen, F., and Williams, S., Acta Metall. 26, 1647 (1978); M. F. Ashby and F. Spaepen, Scripta Met., 12, 193 (1978); H. F. Frost, M. F. Ashby, and F. Spaepen, Scripta Met., 14, 1051 (1980)Google Scholar
23. Hashimoto, M., Ishida, Y., Yamamoto, R., Doyama, M., and Fujiwara, T., Scripta Met.,16, 267 (1982); M. Hashimoto, Y. Ishida, R. Yamamoto, and M. Doyama, Acta Metall., 32, 1 (1984); Y. Ishida and M. Mori, Journal de Physique, Colloque C4, 46, C4–465 (1985)Google Scholar
24. Andersen, O.K., Jepsen, O., and Glotzel, D., in Highlights of Condensed Matter Theory (ed. Bassani, F., Fumi, F. and Tosi, M. P.) North Holland, New York, 1985; O. K. Andersen, in Electronic Structure of Complex Systems (ed. P. Phariseau and W. M. Timmerman), Plenum, New York, 1984, p. 11; H. L. Skriver, The LMTO Method , Springer, Berlin, 1984Google Scholar
25. von Barth, U. and Hedin, L., J. Phys., C 5, 1629 (1972)Google Scholar
26. Diaz, A. E. and Reed-Hill, R. E., Scripta Met., 13, 491 (1979)Google Scholar
27. Kumar, R., Mosheim, C. E., and Mechaluk, C. A., in High Tmperature Silicides and Refractory Alloys (ed. by Briant, C. L., Petrovic, J. J., Bewlay, B. P., Vasudevan, A. K., and Lipsitt, H. A.), Mat. Res. Soc. Symp. Proc. 322, Pittsburgh, PA (1994), p. 413 Google Scholar
28. Rice, J. R. and Wang, J.-S., Mat. Sci. and Eng. A, 107, 23 (1989); P. M. Anderson, J-S. Wang, and J. R. Rice, in Innovations in Ultrahigh-Strength Steel Technology (ed. by G. B. Olson, M. Azrin, and E. S. Write). 34th Sagamore Army Resesarch Conference Proceedings, 1990, p. 619Google Scholar
29. Seah, M. P., Acta Metall., 28, 955 (1980)Google Scholar