Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:49:20.018Z Has data issue: false hasContentIssue false

Entropic Elasticity of Lamellar Tethered Membrane Phases

Published online by Cambridge University Press:  25 February 2011

Leonardo Golubovic
Affiliation:
Chemical Engineering 210-41, Caltech, Pasadena, CA 91125
T.C. Lubensky
Affiliation:
Physics Dept., Univ. of Pennsylvania, Philadelphia, PA 19104
Get access

Abstract

Entropic elastic constants of lamellar tethered membrane phases are considered both in the vicinity of and at temperatures well below the membrane crumpling transition critical point. We calculate entropic forces acting on boundaries of these systems. Various predictions of the statistical physics of tethered membranes, such as the breakdown of the classical membrane elasticity theory at low temperatures or the existence of the crumpling transition, can be tested experimentally by using our results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kantor, Y., Kardar, M., and Nelson, D.R., Phys. Rev. Lett. 57, 791 (1986).CrossRefGoogle Scholar
[2] Nelson, D.R. and Peliti, L., J. Phys. France 48, 1085 (1987).Google Scholar
[3] Aronovitz, J.A. and Lubensky, T.C., Phys. Rev. Lett. 60, 2634 (1988).Google Scholar
[4] Aronovitz, J.A., Golubovic, L., and Lubensky, T.C., J. Phys. France 50, 609 (1989).Google Scholar
[5] Leibler, S. and Maggs, A.G., Phys. Rev. Lett. 63, 406 (1989).Google Scholar
[6] Kantor, Y. and Nelson, D.R., Phys. Rev. Lett. 58, 2774 (1987); F. David and E. Guitter, Europhys. Lett. 5, 709 (1988). These works consider crumpling transition of nonselfavoiding tethered membrane. More recent numerical simulations searching for the transition in selfavoiding membranes are M. Plischke and D. Boal, Phys. Rev. A38, 4943 (1988); F.F. Abraham, W.E. Rudge, M. Plischke Phys. Rev. Lett. 62, 1757 (1989); J.-S. Ho and A. Baumgartner, Phys. Rev. Lett. 63, 1324 (1989); G. Grest and M. Murat, J. Phys. France 51, 1415 (1990); F. F. Abraham and D.R. Nelson, J. Phys. France 51, 2653 (1990).CrossRefGoogle Scholar
[7] Paczuski, M., Kardar, M., and Nelson, D. R., Phys. Rev. Lett. 60, 2638 (1988).Google Scholar
[8] Roux, D. and Safinya, C. R., private communications.Google Scholar
[9] Helfrich, W., Z. Naturforsch 33a, 305 (1978).Google Scholar
[10] Golubovic, L. and Lubensky, T.C., Phys. Rev. B39, 121.10 (1989).Google Scholar
[11] Safinya, C.R., Roux, D., Smith, G. S., Sinha, S. K., Dimon, P., Clark, N.A., and Bellocq, A.M., Phys. Rev. Lett. 57, 2718 (1986); F.C. Larche, J. Appel, G. Porte, P. Bassereau, and J. Marignan, Phys. Rev. Lett. 56, 1700 (1986). See also D. Roux and C.R. Safinya, J. Phys. France 49, 307 (1988).CrossRefGoogle Scholar
[12] Golubovic, L. and Lubensky, T. C., Phys. Rev. A41, 4343 (1990).Google Scholar
[13] Golubovic, L. and Lubensky, T.C., Phys. Rev. A43, 6793 (1991); L. Golubovic, Phys. Rev. Lett. 65, 1963 (1990).Google Scholar
[14] Toner, J., Phys. Rev. Lett. 64, 1741 (1990).Google Scholar
[15] Gennes, P.G. de, J.Phys. (Paris) 37, 1443 (1976); S. Alexander, 38, 983 (1977).Google Scholar