Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T11:25:03.732Z Has data issue: false hasContentIssue false

Entanglement and the Nonlinear Elastic Behavior of Forests of Coiled Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Vitor R. Coluci
Affiliation:
[email protected], State University of Campinas, Applied Physics, DFA-IFGW-UNICAMP, Campinas-SP, 13081-970, Brazil, +55-1935215369, +55-1935215376
Alexandre F. Fonseca
Affiliation:
[email protected], University of Texas at Dallas, Alan G. McDiarmid NanoTech Institute, Richardson, TX, 5083-0688, United States
Douglas S. Galvao
Affiliation:
[email protected], State University of Campinas, Applied Physics, DFA-IFGW-UNICAMP, Campinas-SP, 13081-970, Brazil, +55-1935215369, +55-1935215376
Chiara Daraio
Affiliation:
[email protected], California Institute of Technology, Aeronautics and Applied Physics, Pasadena, CA, 91125, United States
Get access

Abstract

A model for the elastic response of a foamlike forest of coiled carbon nanotubes under mechanical impact is proposed according to recent experiments reported in the literature. A force vs. displacement relation is derived for different geometries of the impacting object (sphere, cube and circular cone). In the model, entanglement among neighboring coils in the superior part of the forest is explicitly taken into account and we show that it allows the full description of the strongly nonlinear elastic behavior of the forest.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fonseca, A. F. da and Galvão, D. S., Phys. Rev. Lett. 92, 175502 (2004) and references cited therein.Google Scholar
2. Baughman, R. H., Zakhidov, A. A., and Heer, W. A. de, Science 297, 787 (2002).Google Scholar
3. McIlroy, D. N., Alkhateeb, A., Zhang, D., Aston, D. E., Marcy, A. C. and Norton, M. G., J. Phys.: Condens. Matter 16, R415 (2004).Google Scholar
4. Korgel, B. A., Science 309, 1693 (2005).Google Scholar
5. Dunlap, B. I., Phys. Rev. B 46, 1933 (1992).Google Scholar
6. Itoh, S., Ihara, S., and Kitakami, J., Phys. Rev. B 47, 1703 (1993).Google Scholar
7. Itoh, S., Ihara, S., and Kitakami, J., Phys. Rev. B 48, 5643 (1993).Google Scholar
8. Itoh, S. and Ihara, S., Phys. Rev. B 48, 8323 (1993).Google Scholar
9. Zhang, X. B., Zhang, X. F., Bernaerts, D., Vantendeloo, G. T., Amelinckx, S., Vanlanduyt, J., Ivanov, V., Nagy, J.B., Lambin, P., and Lucas, A. A., Europhys. Lett. 27, 141 (1994).Google Scholar
10. Chen, X., Zhang, S., Dikin, D. A., Ding, W., Ruoff, R. S., Pan, L., and Nakayama, Y., Nano Lett. 3, 1299 (2003).Google Scholar
11. Motojima, S., Chen, X., Yang, S., and Hasegawa, M., Diam. Relat. Mater. 13, 1989 (2004).Google Scholar
12. Lau, K. T., Lu, M., and Hui, D., Composites. Part B, Engineering 37, 437 (2006).Google Scholar
13. Daraio, C., Nesterenko, V. F., and Jin, S., J. Appl. Phys. 100, 064309 (2006).Google Scholar
14. Theory of Elasticity, Landau, L. D. and Lifshitz, E. M., Pergamon, Oxford, 1986.Google Scholar
15. Coluci, V. R., Fonseca, A. F., Galvão, D. S. and Daraio, C., Phys. Rev. Lett. 100, 086807 (2008).Google Scholar
16. Rodrigues, E., Paredes, M., and Sartor, M., J. Mech. Des. 128, 1352 (2006).Google Scholar