Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:55:40.696Z Has data issue: false hasContentIssue false

The Enhancement of Thermoelectric Power and Scattering of Carriers in Bi2−xSnxTe3 Single Crystals

Published online by Cambridge University Press:  15 February 2011

V.A. Kulbachinskii
Affiliation:
Low Temperature Physics Department, Physics Faculty, Moscow State University, 119899, Moscow, Russia
H. Negishi
Affiliation:
Department of Material Science, Hiroshima University, Higashi-Hiroshima 739, Japan
M. Sasaki
Affiliation:
Department of Material Science, Hiroshima University, Higashi-Hiroshima 739, Japan
Y. Giman
Affiliation:
Department of Material Science, Hiroshima University, Higashi-Hiroshima 739, Japan
M. Inoue
Affiliation:
Department of Material Science, Hiroshima University, Higashi-Hiroshima 739, Japan
Get access

Abstract

Thermoelectric power, electrical resistivity, and Hall effect of p-type Bi2−xSnxTe3 (0<x<0.03) singlecrystals have been measured in the temperature range 4.2–300K. By doping of Sn atoms into the host Bi2Te3 lattice, the enhancement in the thermoelectric power is observed in the intermediate temperature range 30–150 K for x≤0,0075. The activation type behaviour of Hall coefficient and resistivity are found which corresponds to the Sn-induced impurity band located above the second lower valence band.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Middendorf A., A. von, and Lanwehr G., G., Sol. State Com. 11, p.203 (1972).Google Scholar
2. Kohler H., H., Phys. Stat. sol. (b) 74, p.591 (1976).Google Scholar
3. Tamura, H., Jpn. J. Appl. Phys. 5, p. 1169 (1966).Google Scholar
4. Predota, M., and Benesh, L., Phys. stat. sol. (a) 100, p. 401 (1987).Google Scholar
5. Brandt, N.B., and Kulbachinskii, V.A., Semicond, Sci. Technol. 7, p.907 (1992).Google Scholar
6. Biswas, S., and Bhattacharya, R., phys. stat. sol. (b) 151, p.193 (1989).Google Scholar
7. Kulbachinskii, V.A., Klokova, N.E., Skipidarov, S.Ya., Horak, J., Lostak, P., and Azou, S.A., Vestnik Moskovskogo Universiteta, Fizika, 30, N3, p. 68 (1989), (for English translation see: Soy. Phys. Vestnik MGU, Physics, 30, (1989)).Google Scholar
8. Kulbachinskii, V.A., Brandt, N.B., Cheremnykh, P.A., et al, phys. stat. sol. (b) 150, p.247, (1988).Google Scholar
9. Kulbachinskii, V.A., Klokova, N.E., Horak, J., Lostak, P., Azou, S.A., Mironova, G.A., Fiz. Tverd. Tela (Leningrad) 31, p. 2218 (1989); ( for English translation see: Soy. Phys. Solid State 31, (1989)).Google Scholar
10. Goldshmitt, H.J., Adv. Phys. 14, p.273, (1965).Google Scholar
11. Kulbachinskii, V.A., Inoue, M., Sasaki, M., Negishi, H., Gao, W.X., Takase, K., Giman, Y., Lostak, P., and Horak, J., Phys. Rev. B, 50, p. 16921 (1994).Google Scholar
12. Seeger, K., Semiconductor Physics, Springer-Verlag, New York 1973.Google Scholar
13. Kulbachinskii, V.A., Negishi, H., Sasaki, M., et al., phys. stat. sol. (b) 199, p.505, (1997).Google Scholar
14. Sehr, R., and Testardi, L.R., J. Phys. Chem. Solids 23, p. 19 (1962).Google Scholar