Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T18:20:25.100Z Has data issue: false hasContentIssue false

Enhancement of Photoluminescence from Organic and Inorganic Surface Passivated ZnS Quantum Dots

Published online by Cambridge University Press:  21 March 2011

Hatim Mohamed El-Khair
Affiliation:
National Laboratory of Solid State Microstructures and Department of PhysicsNanjing University1, Nanjing 210093, China
Ling Xu
Affiliation:
National Laboratory of Solid State Microstructures and Department of PhysicsNanjing University1, Nanjing 210093, China
Mingha Li
Affiliation:
National Laboratory of Solid State Microstructures and Department of PhysicsNanjing University1, Nanjing 210093, China
Yi Ma
Affiliation:
National Laboratory of Solid State Microstructures and Department of PhysicsNanjing University1, Nanjing 210093, China
Xinfan Huang
Affiliation:
National Laboratory of Solid State Microstructures and Department of PhysicsNanjing University1, Nanjing 210093, China
Kunji Chen
Affiliation:
National Laboratory of Solid State Microstructures and Department of PhysicsNanjing University1, Nanjing 210093, China
Get access

Abstract

ZnS quantum dots (QDs) chemically synthesized in PVP stabilizing medium have been coated with Zn(OH)2, SiO2and polystyrene (PS) shells as inorganic and organic passivation agents. to synthesize ZnS/Zn(OH)2, ZnS/SiO2and ZnS/PS QDs. PL properties of inorganically passivated ZnS/Zn(OH)2 and ZnS/SiO2 had reported band edge enhancement of 8-10 times, while organically passivated ZnS/PS QDs exhibit tremendous enhancement of band edge emission as much as 10-15 times,. Therefore inorganic and organic coating can passivate trap states of different energies on the surface of ZnS QDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alivisatos, A. P., J. Phys. Chem. 100, (1996) 13226 Google Scholar
2. Xu, Ling, Huang, Xinfan, Chen, Hongming, Xu, Jun and Chen, Kunji, Jpn. J. Appl. Phys. 37, (1998) 3491 Google Scholar
3. Kortan, A. R., Opila, R. L., Bawendi, M. G., Steigerwald, M. L., Carroll, P. J. and Brus, L. E., J. Am. Chem. Soc., 112(1990) 1327.Google Scholar
4. Liveri, V. Turco, Rossi, M., D'Arrigo, G., Manno, D. and Micocci, G., Appl. Phys. A, 69 (1999) 369.Google Scholar
5. Eychuler, A., Hasselberth, A., Kastikas, L. and Weller, H.. J. Of Luminescence, 48 & 49 (1991) 745.Google Scholar
6. Davey, R. J., Williams-Seton, L., Lieberman, H. F. and Blagden, N., Nature, 402 (1999) 797.Google Scholar
7. Holland, Brian T., Blanford, Christopher F., and Stein, Andreas, Science, 281 (1998) 538.Google Scholar
8. Busch, Kurt and John, Sajeev, Physical Review E, 58 (1998) 3896.Google Scholar
9. Artemyev, M. V. and , Woggon, Appl. Physics Letter, 76 (2000) 1353.Google Scholar
10. Tian, Yongchi, Newton, Theresa, Kotov, Nicholas A., Guldi, Dirk M. and Fendler, Janos H., J. Phys. Chem., 100 (1996) 8927.Google Scholar
11. Hong-Bin, Huang, Ling, Xu, Hong-Ming, Chen, Xinfan, Hung, Kunji, Chen and Duan, Feng, Acta Physica Sinica, 1 (1999) 40.Google Scholar
12. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Hine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G., J. Phys. Chem. B,101 (1997) 9463.Google Scholar
13. El-Khair, H. M., Ling, XU, Xin-Fan, HUANG, Ming-Hai, LI and Kun-Ji, CHEN, Chin. Phys Lett., 18 (2001) 616.Google Scholar
14. Becker, W.G. and Bard, A. J., J. Phys. Chem., 87 (1983) 4888.Google Scholar
15. Xu, L., Huang, X.F., Zhu, J., Chen, H.M., and Chen, K.J., J. Mater. Sci., 35 (2000) 1375.Google Scholar