Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:05:01.504Z Has data issue: false hasContentIssue false

Enhancement of InGaN-based MQW Grown on Si(111) Substrate by Underlying AlGaN/GaN SLS Cladding Layer

Published online by Cambridge University Press:  31 January 2011

Bin Abu Bakar Ahmad Shuhaimi
Affiliation:
[email protected], Nagoya Institute of Technology, Research Center for Nano-Device and System, Nagoya, Aichi, Japan
Takaaki Suzue
Affiliation:
[email protected], United States
Yukiyasu Nomura
Affiliation:
[email protected], United States
Yoshinori Maki
Affiliation:
[email protected], Nagoya Institute of Technology, Research Center for Nano-Device and System, Nagoya, Aichi, Japan
Takashi Egawa
Affiliation:
[email protected], United States
Get access

Abstract

This paper reports enhanced internal-quantum-efficiency (IQE) in InGaN-based multi-quantum-well (MQW) grown on Si(111) substrate with underlying strained-layer-superlattice (SLS) cladding layer for application in LDs and LEDs. In comparative study between a thick Al0.03Ga0.97N bulk and an Al0.06Ga0.94N/GaN SLS cladding layer, transmission-electron-microscopy (TEM) images reveal that Al0.06Ga0.94N/GaN SLS cladding layer is effective to suppress threading dislocations. A higher IQE has been achieved in sample with underlying Al0.06Ga0.94N/GaN SLS cladding layer, compared to that of Al0.03Ga0.97N bulk cladding layer. IQE of 31.6% has been achieved in sample with underlying Al0.06Ga0.94N/GaN SLS cladding layer when the MQW thickness is reduced to 2 nm.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ishikawa, H. Zhao, G. Y. Nakada, N. Egawa, T. Jimbo, T. and Umeno, M. Jpn. J. Appl. Phys. 38, L492 (1999).Google Scholar
2 Egawa, T. Zhang, B. Nishikawa, N. Ishikawa, H. Jimbo, T. and Umeno, M. J. Appl. Phys. 91, 528(2002).Google Scholar
3 Egawa, T. Moku, T. Ishikawa, H. Ohtsuka, K. and Jimbo, T. Jpn. J. Appl. Phys. 41, L663 (2002).Google Scholar
4 Egawa, T. Zhang, B. and Ishikawa, H. IEEE Elect. Dev. Lett. 26, 169(2005).Google Scholar
5 Zhang, B. Egawa, T. Ishikawa, H. Liu, Y. and Jimbo, T. Jpn. J. Appl. Phys. 42, L226 (2003).Google Scholar
6 Dadgar, A. Christen, J. Riemann, T. Richter, S. Bläsing, J., Diez, A. Krost, A. Alam, A. and Heuken, M. Appl. Phys. Lett. 78, 2211(2001).Google Scholar
7 Dadgar, A. Hums, C. Diez, A. Bläsing, J. and Krost, A. J. Cryst. Growth 297, 279(2006).Google Scholar
8 Cheng, K. Leys, M. Degroote, S. Germain, M. and Borghs, G. Appl. Phys. Lett. 92, 192111(2008).Google Scholar
9 Zang, K. Y. Wang, Y. D. Wang, L. S. Chow, S. Y. and Chua, S. J. J. Appl. Phys. 101, 093502(2007).Google Scholar
10 Selvaraj, S. L. Ito, T. Terada, Y. and Egawa, T. Appl. Phys. Lett. 90, 173506(2007).Google Scholar
11 Son, J. K. Lee, S. N. Sakong, T. Paek, H. S. Nam, O. Park, Y. Hwang, J. S. Kim, J. Y. and Cho, Y. H. J. Cryst. Growth 287, 558(2006).Google Scholar
12 Chichibu, S. F. Shikanai, A. Deguchi, T. Setoguchi, A. Nakai, R. Nakanishi, E. Wada, K. DenBaars, S. P. Sota, T. and Nakamura, S. Jpn. J. Appl. Phys. 39, 2417(2000).Google Scholar
13 Cho, Y. H. Gainer, G. H. Fischer, A. J. Song, J. J. Keller, S. Mishra, U. K. and DenBaars, S. P. Appl. Phys. Lett. 73, 1370(1998).Google Scholar