Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T15:38:30.487Z Has data issue: false hasContentIssue false

Enhancement of Boron Activation in Shallow Junctions by Hydrogen

Published online by Cambridge University Press:  17 March 2011

A. Vengurlekar
Affiliation:
Department of Engineering Science, Pennsylvania State University, University Park, PA 16802
S. Ashok
Affiliation:
Department of Engineering Science, Pennsylvania State University, University Park, PA 16802
C. E. Kalnas
Affiliation:
Solid State Measurements Inc., Pittsburgh, PA 15275
N. D. Theodore
Affiliation:
Motorola Inc., Advanced Products R&D Labs, Tempe, AZ 85284
Get access

Abstract

The ability to activate greater amounts of dopants at lower temperatures is a persistent contingency in the continual drive for device scaling in Si microelectronics. We report on the effect of incorporating atomic hydrogen on the activation of implanted boron in shallow junctions. Hydrogen incorporation into the sample was carried out by exposure to an electron cyclotron resonance (ECR) hydrogen plasma. Enhanced activation was observed in hydrogenated samples for post-implantation annealing temperatures of 450°C and below, as measured by spreading resistance profilometry, and confirmed by identical boron atomic profile in hydrogenated and unhydrogenated samples. The enhancement in boron activation at lower temperature is attributed to the creation of vacancies in the boron-implanted region, the lattice-relaxation effect by the presence of atomic hydrogen, and the effect of atomic hydrogen on boron-interstitial cluster formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Packan, P. A., MRS Bulletin 18, (June 2000).Google Scholar
2. Jin, J.-Y., Rusakova, I., Li, Q., Li, J., Chu, W.-K. in Si Front-End Processing Physics and Technology of Dopant-Defect Interactions II, edited by Agarwal, A., Pelaz, L., Vuong, H-H., Packan, P., Kase, M. (Mater. Res. Soc. Proc. 610, San Francisco, CA, 2000 pp5.6.1 Google Scholar
3. Kalyanaraman, R., Venezia, V. C., Pelaz, L., Haynes, T. E., Gossman, H.-J., Rafferty, C. S., Appl. Phys. Lett. 82, (2), 215 (2003).Google Scholar
4. Shao, L., Liu, J. R., Thompson, P. E., Wang, X. M., Rusakova, I., Chen, H., Chu, W.-K., Electrochem and Solid-State Lett. 5 (10), G93 (2002).Google Scholar
5. Mannino, G., Priolo, F., Privitera, V., Napolitani, E., Carnera, A., Nucl. Instr. Meth. Phys. Res. B 147, 18 (1998).Google Scholar
6. Venezia, V. C., Haynes, T. E., Agarwal, A., Pelaz, L., Gossman, H.-J., Jacobson, D. C., Eaglesham, D. J., Appl. Phys. Lett. 74 (9), 1299 (1999).Google Scholar
7. Siedel, T. and MacRae, U., Proc. of 1st Int. Conf. in Ion Implantation, (1971), p.253 Google Scholar
8. Stolk, P. A., Gossman, H.-J., Eaglesham, D. J., Jacobson, D. C., Poate, J. M., Appl. Phys. Lett. 70, 2258 (1997).Google Scholar
9. Mannino, G., Privitera, V., Solmi, S., Cowern, N. E. B., Nucl. Instr. & Meth. Phys. Res. B 186, 246 (2002).Google Scholar
10. Jain, S. C., Schoenmaker, W., Lindsay, R., Stolk, P. A., Decoutere, S., Willander, M., Maes, H. E., J. Appl. Phys. 91 (11), 8919 (2002).Google Scholar
11. Singh, R., Fonash, S. J., Rohatgi, A., Choudhury, P. Rai, Gigante, J., J. Appl. Phys. 55 (4), 867 (1984).Google Scholar
12. Li, H.-J., Kohli, P., Ganguly, S., Kirichenko, T. A., Zeitoff, P., Torres, K., Banerjee, S., Computational Nanoscience 2001, 108.Google Scholar
13. Nazarov, A. N., Pinchuk, V. M., Yanchuk, T. V., Lysenko, V. S., Vovk, Ys. N., Rangan, S., Ashok, S., Kudorayova, V., Terukov, E. I., Int. J. of Hydrogen Energy 26, 521 (2001).Google Scholar
14. Nazarov, A. N., Pinchuk, V. M., Lysenko, V. S., Yanchuk, T. V., Ashok, S., Phys. Rev. B 58 (7), 3522 (1998).Google Scholar
15. Rangan, S., Horn, M., Ashok, S., Chu in Si Front-End Processing Physics and Technology of Dopant-Defect Interactions II, edited by Agarwal, A., Pelaz, L., Vuong, H-H., Packan, P., Kase, M. (Mater. Res. Soc. Proc. 610, San Francisco, CA, 2000 pp5.7.1 Google Scholar
16. Nam, C.W. and Ashok, S., J. Appl. Phys. 77, 2819 (1995).Google Scholar
17. Ziegler, J. F., Biersack, J. P., and Littmark, U.; The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985).Google Scholar