Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:38:35.304Z Has data issue: false hasContentIssue false

Enhanced Wettability of Nanocrystalline Diamond Films for Biocoating Applications

Published online by Cambridge University Press:  10 January 2012

Jason H. C. Yang
Affiliation:
Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
Kungen Teii
Affiliation:
Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
Get access

Abstract

Nanocrystalline diamond (NCD) films are prepared from Ar-rich/N2/CH4 and Ar-rich/H2/CH4 mixtures by microwave plasma-enhanced chemical vapor deposition, and further treated by microwave hydrogen and oxygen plasma exposures separately to enhance the wetting property. The hydrogen plasma treatment has small effect on the surface roughness, while the oxygen plasma treatment forms fine protrusions on the film surface. Results show that the wettability of the hydrogen plasma treated NCD film is nearly constant or little improvement as the polar component of the apparent surface free energy is close to the as-deposit NCD film. In contrast, the wettability of the oxygen plasma treated NCD film is improved dramatically such that the contact angle is reduced from 92º and 4.7º to almost 0º for water and 1-bromonaphthalene, respectively, and the polar component increases significantly to 34 mJ/m2. The low contact angle suggests that the film is considerably a cell adhesive friendly surface, which is essential in maintaining multicellular structure, and thus making it a favorable wetting surface for biological and biomedical applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, L., Tsai, C., Gerberich, W. W., Kruckeberg, L., Kania, D. R., Biomaterials. 16 (1995) 483.Google Scholar
2. Garguilo, J. M., Davis, B. A., Buddie, M., Köck, F. A. M., Nemanich, R. J., Diamond Relat. Mater. 13 (2004) 595.Google Scholar
3. Zhong, Y. L., Chong, K. F., May, P. W., Chen, Z.-K., Loh, K. P., Langmuir 23 (2007) 5824.Google Scholar
4. Gribanova, E. V., Zhukov, A. N., Antonyuk, I. E., Benndorf, C., Baskova, E. N., Diamond Relat. Mater. 9 (2000) 1.Google Scholar
5. Pinzari, F., Ascarelli, P., Cappelli, E., Mattei, G., Giorgi, R., Diamond Relat. Mater. 10 (2001) 781.Google Scholar
6. Ostrovskaya, L., Perevertailo, V., Ralchenko, V., Dementjev, A., Loginova, O., Diamond Relat. Mater. 11 (2002) 845.Google Scholar
7. Kaibara, Y., Sugata, K., Tachiki, M., Umezawa, H., Kawarada, H., Diamond Relat. Mater. 12 (2003) 560.Google Scholar
8. Birrell, J., Gerbi, J. E., Auciello, O., Gibson, J. M., Gruen, D. M., Carlisle, J. A., J. Appl. Phys. 93 (2003) 5606.Google Scholar
9. Bhattacharyya, S., Auciello, O., Birrell, J., Carlisle, J. A., Curtiss, L. A., Goyette, A. N., Gruen, D. M., Krauss, A. R., Schlueter, J., Sumant, A., Zapol, P., Appl. Phys. Lett. 79 (2001) 1441.Google Scholar
10. Achatz, P., Williams, O. A., Bruno, P., Gruen, D. M., Garrido, J. A., Stutzmann, M., Phys. Rev. B 74 (2006) 155429.Google Scholar
11. Ikeda, T., Teii, K., Casiraghi, C., Robertson, J., Ferrari, A. C., J. Appl. Phys. 104 (2008) 073720.Google Scholar
12. Ostrovskaya, L., Perevertailo, V., Ralchenko, V., Saveliev, A., and Zhuravlev, V., Diamond Relat. Mater. 16 (2007) 2109.Google Scholar
13. Popov, C., Vasilchina, H., Kulisch, W., Danneil, F., Stüber, M., Ulrich, S., Welle, A., Reithmaier, J. P., Diamond Relat. Mater. 18 (2009) 895.Google Scholar
14. Lifshitz, Y., Lee, C. H., Wu, Y., Zhang, W. J., Bello, I., Lee, S. T., Appl. Phys. Lett. 88 (2006) 243114.Google Scholar
15. Teii, K., Ikeda, T., Appl. Phys. Lett. 90 (2007) 111504.Google Scholar
16. Liu, C. M., Teii, K., Sung, T. L., Ting, K., Teii, S., IEEE Trans. Plasma Sci. 37 (2009) 1172.Google Scholar
17. Ferrari, A. C., Robertson, J., Phys. Rev. B 61 (2000) 14095.Google Scholar
18. Ferrari, A. C., Robertson, J., Phys. Rev. B 64 (2001) 075414.Google Scholar
19. Ferrari, A. C., Robertson, J., Phys. Rev. B 63 (2001) 121405(R).Google Scholar
20. Teii, K., Ikeda, T., Plasma Process. Polym. 3 (2006) 708.Google Scholar
21. Teii, K., Ikeda, T., Diamond Relat. Mater. 16 (2007) 753.Google Scholar
22. Yang, J.H.C., Teii, K., Diamond Relat. Mater., to be published.Google Scholar
23. Yang, J.H. C., Teii, K., unpublished.Google Scholar
24. Owens, D. K., Wendt, R. C., J. Appl. Polym. Sci. 13 (1969) 1741.Google Scholar