Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T06:53:16.287Z Has data issue: false hasContentIssue false

Enhanced thermopower of GaN nanowires with transitional metal impurities

Published online by Cambridge University Press:  21 August 2013

G. A. Nemnes
Affiliation:
University of Bucharest, Faculty of Physics, ‘‘Materials and Devices for Electronics and Optoelectronics’’ Research Center, P.O. Box MG-11, 077125 Magurele-Ilfov, Romania
Camelia Visan
Affiliation:
‘‘Horia Hulubei’’ National Institute for Physics and Nuclear Engineering (IFIN-HH), 077126 Magurele-Ilfov, Romania
T. L. Mitran
Affiliation:
University of Bucharest, Faculty of Physics, ‘‘Materials and Devices for Electronics and Optoelectronics’’ Research Center, P.O. Box MG-11, 077125 Magurele-Ilfov, Romania
Adela Nicolaev
Affiliation:
University of Bucharest, Faculty of Physics, ‘‘Materials and Devices for Electronics and Optoelectronics’’ Research Center, P.O. Box MG-11, 077125 Magurele-Ilfov, Romania
L. Ion
Affiliation:
University of Bucharest, Faculty of Physics, ‘‘Materials and Devices for Electronics and Optoelectronics’’ Research Center, P.O. Box MG-11, 077125 Magurele-Ilfov, Romania
S. Antohe
Affiliation:
University of Bucharest, Faculty of Physics, ‘‘Materials and Devices for Electronics and Optoelectronics’’ Research Center, P.O. Box MG-11, 077125 Magurele-Ilfov, Romania
Get access

Abstract

The thermopower properties of GaN nanowires with transitional metal impurities are investigated in the framework of constrained spin density functional theory (DFT) calculations. The nanowires are connected to nanoscopic Al[111] electrodes, which ensure a natural coupling to the wurtzite structure of the nanowires. We investigate the thermoelectric properties comparatively for the pristine GaN nanowire and the system with one Mn adatom. Our study points out the predicted qualitative behavior for systems with a peak in the total transmission, as well as the sign change in the thermopower. For the system with the magnetic impurity we find an enhanced conductance, thermopower and figure of merit. The detectable spin current polarization suggests the device structure may be also used in low temperature sensing applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Markussen, T., Jauho, A.-P., Brandbyge, M., Phys. Rev. B 79, 035415 (2009)CrossRefGoogle Scholar
Li, Y.-F., Li, B.-R., Zhang, H.-L., J. Phys.: Condens. Matter 20, 415207 (2008)Google Scholar
Shi, X.Q., Dai, Z.X., Zheng, X.H., Zeng, Z., J. Chem. Phys. B 110, 16902 (2006)CrossRefGoogle Scholar
Dai, Z.X., Zheng, X.H., Shi, X.Q., Zeng, Z., Phys. Rev. B 72, 205408 (2005)CrossRefGoogle Scholar
Cutler, M., Mott, N.F., Phys. Rev. 181(3), 1336 (1969)CrossRefGoogle Scholar
Sivan, U., Imry, Y., Phys. Rev. B 33(1), 551 (1986)CrossRefGoogle Scholar
Streda, P., J. Phys.: Condens. Matter 1, 1025 (1989)Google Scholar
Nemnes, G.A., Ion, L., Antohe, S., Physica E 42, 1613 (2010)CrossRefGoogle Scholar
Nemnes, G.A., Visan, C., Antohe, S., Physica E 44, 1092 (2012)CrossRefGoogle Scholar
Nemnes, G.A., J. Nanomater. 408475 (2013)Google Scholar
Soler, J. M., Artacho, E., Gale, J. D. et al. ., J. Phys.: Condens. Matt. 14, 2745 (2002)Google Scholar
Brandbyge, M., Mozos, J. L. et al. ., Phys. Rev. B 65, 165401 (2002)CrossRefGoogle Scholar
Nemnes, G.A., J. Nanomater. 748639 (2012)Google Scholar