Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:28:07.567Z Has data issue: false hasContentIssue false

Enhanced thermoelectric properties in PbTe Nanocomposites

Published online by Cambridge University Press:  31 January 2011

Hillary Kirby
Affiliation:
[email protected], University of South Florida, Physics, Tampa, Florida, United States
Joshua Martin
Affiliation:
[email protected], NIST, Ceramics Division, Gaithersburg, Maryland, United States
Anuja Datta
Affiliation:
[email protected], University of South Florida, Physics, Tampa, Florida, United States
Lidong Chen
Affiliation:
[email protected], Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai, China
George S. Nolas
Affiliation:
[email protected], University of South Florida, Physics, Tampa, Florida, United States
Get access

Abstract

Dimensional nanocomposites of PbTe with varying carrier concentrations were prepared from undoped and Ag doped PbTe nanocrystals synthesized utilizing an alkaline aqueous solution-phase reaction. The nanocrystals were densified by Spark Plasma Sintering (SPS) for room temperature resistivity, Hall, Seebeck coefficient, and temperature dependent thermal conductivity measurements. The nanocomposites show an enhancement in the thermoelectric properties compared to bulk PbTe with similar carrier concentrations, thus demonstrating a promising approach for enhanced thermoelectric performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nolas, G. S., Sharp, J. W., and Goldsmid, H. J. Thermoelectrics: Basic Principles and New Materials Developments, (Springer-Verlag, Heidelberg, 2001), p. 45.Google Scholar
[2] Faleev, S. V. and Léonard, F., Phys. Rev. B 77, 214304 (2008).Google Scholar
[3] Kishimoto, K. and Koyanagi, T.. J. Appl. Phys. 92, 2544 (2002).Google Scholar
[4] Heremans, J. P., Thrush, C. M., and Morelli, D. T.. Phys. Rev. B. 70, 115334 (2004).Google Scholar
[5] Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H.. Wang, D. Z., Ren, Z. F., Fleurial, J. P., and Gogna, P.. Mater. Res. Soc. Symp. Proc. 886, 3 (2006).Google Scholar
[6] Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M. S., Chen, G., Renl, Z., Science 320, 634 (2008).Google Scholar
[7] Heremans, J. P., Thrush, C. M., and Morelli, D. T.. J. Appl. Phys. 98, 063703 (2005).Google Scholar
[8] Zhang, W., Zhang, L., Cheng, Y., Hui, Z., Zhang, X., Xie, Y., and Qian, Y., Mater. Res. Bull. 35, 2009 (2000).Google Scholar
[9] Murray, C. B., Kagan, C. R., and Bawendi, M. G., Annu. Rev. Mater. Sci. 30, 545 (2000).Google Scholar
[10] Xin, H. X. and Qin, X. Y., J. Phys. D, Appl. Phys. 39, 5331 (2006).Google Scholar
[11] Crocker, A. J. and Rogers, L. M. Br, . J. Appl. Phys. 18, 562 (1967).Google Scholar
[12] Martin, J. and Nolas, G.S. Appl. Phys. Lett. 90, 222112 (2007).Google Scholar
[13] Martin, J., Wang, L., Chen, L., and Nolas, G. S., Phys. Rev B 79, 115311 (2009).Google Scholar
[14] Woods, L.M., Popescu, A., Martin, J., and Nolas, G.S., Mater. Res. Soc. Symp., current volume.Google Scholar
[15] Scanlon, W., Solid State Phys. 9, 122 (1959).Google Scholar
[16] Dughaish, Z. H., Physica B 322, 205 (2002).Google Scholar
[17] Putley, E. H., Proc. Phys. Soc. London, Sect. B 65, 388 (1952).Google Scholar
[18 ] Putley, E. H., Proc. Phys. Soc. London, Sect B 65, 736 (1952).Google Scholar
[19] Ravich, Yu. I., Efimova, B. A., and Smirnov, I. A., Semiconducting Lead Chalcogenides (Plenum, New York, 1970), Vol. 5, p.91.Google Scholar