Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:44:21.270Z Has data issue: false hasContentIssue false

Enhanced Signal Micro-Raman Study of SiGe Nanowires and SiGe/Si Nanowire Axial Heterojunctions Grown Using Au and Ga-Au Catalysts

Published online by Cambridge University Press:  10 February 2015

J. Anaya
Affiliation:
Optronlab Group, Dpto. Física de la Materia Condensada, Centro I+D, Universidad de Valladolid, Paseo de Belén 11, 47011 Valladolid, Spain
A. Torres
Affiliation:
Optronlab Group, Dpto. Física de la Materia Condensada, Centro I+D, Universidad de Valladolid, Paseo de Belén 11, 47011 Valladolid, Spain
J. Jiménez
Affiliation:
Optronlab Group, Dpto. Física de la Materia Condensada, Centro I+D, Universidad de Valladolid, Paseo de Belén 11, 47011 Valladolid, Spain
A. Rodríguez
Affiliation:
Tecnología Electrónica, E.T.S.I.T., Universidad Politécnica de Madrid, 28040 Madrid, Spain
T. Rodríguez
Affiliation:
Tecnología Electrónica, E.T.S.I.T., Universidad Politécnica de Madrid, 28040 Madrid, Spain
C. Ballesteros
Affiliation:
Departamento de Física, Universidad Carlos III, Leganes, Spain
Get access

Abstract

MicroRaman spectroscopy was used for the characterization of heterostructured SiGe/Si nanowires. The NWs were grown with alloyed AuGa catalysts droplets with different Ga compositions aiming to make more abrupt heterojunctions. The heterojunctions were first characterized by TEM; then the NWs were scanned by the laser beam in order to probe the heterojunction. The capability of the MicroRaman spectroscopy for studying the heterojunction is discussed. The results show that the use of catalysts with lower Ge and Si solubility (AuGa alloys) permits to achieve more abrupt junctions.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Periwal, P., Sibirev, N.V., Patriarche, G., Salem, B., Bassani, F., Dubrovskii, V.G., Baron, T.; NanoLett. 14, 5140 (2014)CrossRefGoogle Scholar
Clark, T. E., Nimmatoori, P., Lew, K. K., Pan, L., Redwing, J. M., Dickey, E. C., Nano Lett. 8, 1246 (2008).CrossRefGoogle Scholar
Perea, D.E., Li, N., Dickerson, R.M., Misra, A., Picraux, S.T.; NanoLett. 11, 3117 (2011)CrossRefGoogle Scholar
Rodríguez, A., Rodríguez, T., Ballesteros, C., Jiménez, J.; Mat. Res. Soc. Symp. Proc. 1510, DD0605 (2013)CrossRefGoogle Scholar
Anaya, J., Torres, A., Martín-Martín, A., Souto, J., Jiménez, J., Rodríguez, A., Rodríguez, T.; Appl. Phys. A 113, 167 (2013)CrossRefGoogle Scholar
Cao, L., Nabet, B., Spanier, J.E.; Phys. Rev. Lett. 96, 157402 (2006)CrossRefGoogle Scholar
Anaya, J., Jimenez, J., Rodríguez, A., Rodríguez, T.; Mat. Res. Soc. Symp. Proc. 1627, DOI :10.1557/opl.2014.250 (2014)CrossRefGoogle Scholar