Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:34:50.023Z Has data issue: false hasContentIssue false

Enhanced polarization in strained BaTiO3 from first principles

Published online by Cambridge University Press:  01 February 2011

J. B. Neaton
Affiliation:
Department of Physics and Astronomy, Rutgers University Piscataway, NJ 08854-8019
C.-L. Hsueh
Affiliation:
Department of Physics and Astronomy, Rutgers University Piscataway, NJ 08854-8019
K. M. Rabe
Affiliation:
Department of Physics and Astronomy, Rutgers University Piscataway, NJ 08854-8019
Get access

Abstract

The structure, polarization, and zone-center phonons of bulk tetragonal BaTiO3 under compressive epitaxial stress are calculated using density functional theory within the local density approximation. The polarization, computed using the Berry-phase formalism, increases with increasing tetragonality and is found to be enhanced by nearly 70% for the largest compressive misfit strain considered (-2.28%). The results are expected to be useful for the analysis of coherent epitaxial BaTiO3 thin films and heterostructures grown on perovskite substrates having a smaller lattice constant, such as SrTiO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jiang, J. C., Pan, X. Q., Tian, W., Theis, C. D., and Schlom, D. G., Appl. Phys. Lett. 74, 2851 (1999).Google Scholar
2. Tian, W., Pan, X. Q., Haeni, J. H., and Schlom, D. G., preprint.Google Scholar
3. Tybell, T., Ahn, C. H. and Triscone, J. M., Appl. Phys. Lett. 75, 856 (1999).Google Scholar
4. Tsurnumi, T., Ichikawa, T., Harigai, T., Kakemoto, H., Wada, S., J. Appl. Phys. 91, 2284 (2002).Google Scholar
5. Shimuta, T., Nakagawara, O., Makino, T., Arai, S., Tabata, H., and Kawai, T., J. Appl. Phys. 91, 2290 (2002).Google Scholar
6. Schimizu, T. and Kawakubo, T., Jpn. J. Appl. Phys. 37, L235 (1998).Google Scholar
7. Pertsev, N. A., Zembligotov, A. G., and Tagantsev, A. K., Phys. Rev. Lett. 80, 1988 (1998).Google Scholar
8. Pertsev, N. A., Zembligotov, A. G., Hoffmann, S., Waser, R., and Tagantsev, A. K., J. Appl. Phys. 85, 1698 (1999).Google Scholar
9. Pertsev, N. A., Tagantsev, A. K., and Setter, N., Phys. Rev. B 61, R825 (2000).Google Scholar
10. Neaton, J. B. and Rabe, K. M., in preparation.Google Scholar
11. Hohenberg, P. and Kohn, W., Phys. Rev. 136, 864B (1964).Google Scholar
12. Kohn, W. and Sham, L. J., Phys. Rev. 140, 1133A (1965).Google Scholar
13. Kresse, G. and Hafner, J., Phys. Rev. B 47, R558 (1993); G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).Google Scholar
14. Blöchl, P., Phys. Rev. B 50, 17953 (1994). G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).Google Scholar
15. King-Smith, D. and Vanderbilt, D., Phys. Rev. B. 47, 1651 (1993).Google Scholar
16. Lines, M. E. and Glass, A. M., Principles and Applications of Ferroelectrics and Related Mate-rials (Clarendon Press, Oxford, 1977).Google Scholar
17. Íniguez, J., Neaton, J. B., and Vanderbilt, D., Fundamental Physics of Ferroelectrics 2002, Cohen, R. E. and Egami, T., eds., (AIP, Melville, New York, 2002), in press.Google Scholar
18. Cohen, R. E. and Krakauer, H., Phys. Rev. B 42, 6416 (1990).Google Scholar
19. Shirane, G., Danner, H., and Pepinsky, P., Phys. Rev. 105, 856 (1957).Google Scholar
20. Scalabrin, A., Chaves, A. S., Shim, D. S., and Porto, S. P. S., Phys. Stat. Sol. B 79, 731 (1977).Google Scholar
21. Freire, J. D. and Katiyar, R. S., Phys. Rev. B 37, 2074 (1988).Google Scholar
22. Khalal, A., Khatib, D., and Jannot, B., Ann. Ch. Sci. Mat. 24, 471 (1999).Google Scholar
23. Sun, L. et al., Phys. Rev. B 55, 12218 (1997).Google Scholar