Article contents
Enhanced Piezoelectric Properties of Piezoelectric Single Crystals by Domain Engineering
Published online by Cambridge University Press: 01 February 2011
Abstract
For tetragonal barium titanate (BaTiO3) single crystals, an electric field (E-field) applied along [111]c direction can induce an engineered domain configuration. In this study, the engineered domain structures with different domain sizes were induced into BaTiO3 single crystals, and their piezoelectric properties were investigated as a function of a domain size. Prior to this study, the dependence of domain configuration on the temperature and the E-field was investigated using a polarizing microscope in order to understand the optimum condition for fine and coarse domain structures. As a result, above Curie temperature (Tc) of 132.2 °C, when the E-field over 6 kV/cm was applied along [111]c direction, the engineered domain configuration with fine domain structure appeared. Moreover, it was also found that this fine domain structure was still stable at room temperature without E-field. On the other hand, the coarse domain structure was obtained by poling at just below Tc. Finally, the piezoelectric properties were measured using the 31 resonators with different kinds of domain sizes. As the result, it was found that the piezoelectric properties such as d31 and k31 increased significantly with decreasing domain sizes.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
REFERENCES
- 1
- Cited by