Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:08:43.829Z Has data issue: false hasContentIssue false

Enhanced long-term stability of functionalized silicon nanoparticles using esters

Published online by Cambridge University Press:  31 January 2011

Anoop Gupta
Affiliation:
[email protected], University of Duisburg-Essen, Institute for Combustion and Gasdynamics, Lotharstr. 1, Duisburg, NRW, 47057, Germany, +49-203-379-3769, +49-203-379-3087
Sebastian Kluge
Affiliation:
[email protected], University of Duisburg-Essen, Institute for Combustion and Gasdynamics, Duisburg, NRW, Germany
Christof Schulz
Affiliation:
[email protected], University of Duisburg-Essen, Institute for Combustion and Gasdynamics, Duisburg, NRW, Germany
Hartmut Wiggers
Affiliation:
[email protected], University of Duisburg-Essen, Institute for Combustion and Gasdynamics, Duisburg, NRW, Germany
Get access

Abstract

The surface of freshly etched silicon nanoparticles (Si-NPs) was covalently bonded with alkyl groups and esters via thermally induced hydrosilylation. The surface chemistry of functionalized Si-NPs was analyzed at different air exposure time by means of Fourier transform infrared spectroscopy (FTIR). We observed that the stability of functionalized Si-NPs significantly depends on the type of organic ligands attached to their surface. Ester-terminated Si-NPs exhibit higher stability compared to that are bonded with alkyl groups. We show that the use of esters with large spatial configuration causes a lower surface coverage of Si-NPs but at the same time offers better protection against surface oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lee, S., Cho, W. J., Chin, C. S., Han, I. K., Choi, W. J., Park, Y. J., Song, J. D., Lee, J. I., Japan. J. Appl. Phys. 43, L784 (2004).Google Scholar
2 Buriak, J. M., Phil. Trans. R. Soc. A 364, 217 (2006).Google Scholar
3 Canham, L. T., Appl. Phys. Lett. 63, 337 (1993).Google Scholar
4 Erogbogbo, F., Yong, K.-T., Roy, I., Xu, G., Prasad, P. N., Swihart, M. T., ACS Nano 2, 873 (2008).Google Scholar
5 Gupta, A., Swihart, M. T., Wiggers, H., Adv. Funct. Mater. 19, 696 (2009).Google Scholar
6 Li, X., He, Y., Swihart, M. T., Langmuir 20, 4720 (2004).Google Scholar
7 Mangolini, L., Kortshagen, U., Adv. Mater. 19, 2513 (2007).Google Scholar
8 Liao, Y. C., Roberts, J. T., J. Am. Chem. Soc. 128, 9061 (2006).Google Scholar
9 Gupta, A., Erogbogbo, F., Swihart, M. T., Wiggers, H., Mat. Res. Soc. Symp. Proc. 1145–MM10 (2009).Google Scholar
10 Gupta, A., Wiggers, H., Physica E 41, 1010 (2009).Google Scholar
11 Giesen, B., Wiggers, H., Kowalik, A., Roth, P., J. Nanopart. Res. 7, 29 (2005).Google Scholar
12 Buriak, M., Chem. Rev. 102, 1271 (2002).Google Scholar
13 Kluth, G. J., Roya, M., J. Appl. Phys. 80, 5408 (1996).Google Scholar
14 Niwano, M., J.-i.Kageyama, Kurita, K., Kinashi, K., Takahashi, I., Miyamoto, N., J. Appl. Phys. 76, 2157 (1994).Google Scholar
15 Tsu, D. V., Lucovsky, G., Davidson, B. N., Phys. Rev. B 40, 1795 (1989).Google Scholar
16 Marra, D. C., Edelberg, E. A., Naone, R. L., Aydil, E. S., J. Vac. Sci. Technol. A 16, 3199 (1998).Google Scholar
17 Graf, D., Grundner, M., Schulz, R., Muhlhoff, L., J. Appl. Phys. 68, 5155 (1990).Google Scholar
18 Houston, M. R., Maboudian, R., J. Appl. Phys. 78, 3801 (1995).Google Scholar
19 Simons, W.W., The Sadtler Handbook of Infrared Spectra, (Philadelphia: Sadtler Research Laboratories, 1978) pp.5.Google Scholar
20 Ibach, H., Bruchmann, H. D., Wagner, H., Appl. Phys. A 29, 113 (1982).Google Scholar
21 Stewart, M. P., Robins, E. G., Geders, T. W., Allen, M. J., Choi, H. C., Buriak, J. M., Phys. Status Solidi A 182, 109 (2000).Google Scholar
22 Nelles, J., Sendor, D., Ebbers, A., Petrat, F., Wiggers, H., Schulz, C., Simon, U., Colloid Polym. Sci. 285, 729 (2007).Google Scholar