No CrossRef data available.
Article contents
Engineering of Graphene Band Structure by Haptic Functionalization
Published online by Cambridge University Press: 17 April 2012
Abstract
We have employed first-principles density-functional calculations to study the electronic characteristics of graphene functionalized by metal-bis-arene and metal-carbonyl molecules. It is shown that functionalization with M-bis-arene (M(C6H6)@gr, M=Ti, V, Cr, Mn, Fe) molecules leads to an opening in the band gap of graphene (up to 0.81eV for the Cr derivative), and functionalization with M-carbonyl (M(CX)3@gr, X=O,N; M= Cr, Mn, Fe, Co) up to one 1eV for M=Cr and X=O, and therefore transforms graphene from a semi-metal to a semiconductor. The band gap induced by attachment of a metal atom topped by a functionalizing group is attributed to modification of π-conjugation and depends on the concentration of functionalizing molecules, metal’s and moiety’s electronic structure. This approach offers a means of tailoring the band structure of graphene and potentially its applications for future electronic devices.
Keywords
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1407: Symposium AA – Carbon Nanotubes, Graphene and Related Nanostructures , 2012 , mrsf11-1407-aa20-22
- Copyright
- Copyright © Materials Research Society 2012