Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:31:32.670Z Has data issue: false hasContentIssue false

Engineered Proteins for Biomaterials

Published online by Cambridge University Press:  15 February 2011

Patrick S. Stayton
Affiliation:
Center for Bioengineering, WD- 12, University of Washington, Seattle, WA 98195
Ashutosh Chilkoti
Affiliation:
Center for Bioengineering, WD- 12, University of Washington, Seattle, WA 98195
Cynthia J. Long
Affiliation:
Center for Bioengineering, WD- 12, University of Washington, Seattle, WA 98195
Dean K. Pettit
Affiliation:
Center for Bioengineering, WD- 12, University of Washington, Seattle, WA 98195
Philip H. S. Tan
Affiliation:
Center for Bioengineering, WD- 12, University of Washington, Seattle, WA 98195
Guohua Chen
Affiliation:
Center for Bioengineering, WD- 12, University of Washington, Seattle, WA 98195
Allan S. Hoffman
Affiliation:
Center for Bioengineering, WD- 12, University of Washington, Seattle, WA 98195
Get access

Abstract

A molecular adaptor for interfacing environmentally sensitive, soluble polymers and antibody molecules has been developed. The gene coding for the minimally sized, 55 amino acid IgG binding domain from protein G has been constructed by total gene synthesis. This domain is thermally stable, exhibits a highly reversible folding and unfolding equilibrium, and recognizes IgG and Fab molecules with high affinity. These properties make the protein G domain a potentially useful adaptor for non-covalent immobilization of antibodies to soluble polymers and hydrogels. Engineered single-chain Fv antibody fragments have also been constructed and a method for expanding the usefulness of the protein G adaptor to these molecules is proposed. The engineered antibodies also provide a model system for developing general immobilization strategies aimed at maximizing binding affinities and therapeutic responses. The overall goal is to develop optimized engineering designs for functionally optimized antibody-material hybrids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Achari, A., Hale, S. P., Howard, A. J., Clore, G. M., Gronenborn, A. M., Hardman, K. D., and Whitlow, M., Biochemistry 31, 10449 (1992).Google Scholar
2. Gronenborn, A. M., Filipula, D. R., Essig, N. Z., Achari, A., Whitlow, M., Wingfield, P., and Clore, G. M., Science 253, 657 (1991).Google Scholar
3. Stayton, P. S., Olinger, J., Bohn, P. W., and Sligar, S. G., J. Am. Chem. Soc. 114, 9298 (1992).Google Scholar
4. Hoffman, A. S., MRS Bulletin 16 (9), 42 (1991).Google Scholar
5. DeRossi, D., Kajiwara, K., Osada, Y., and Yamauchi, A., Polymer Gels, (Plenum Press, New York, 1991).Google Scholar
6. Chen, J. P., Yang, H. J., and Hoffman, A. S., Biomaterials 11, 625 (1990).Google Scholar
7. Alexander, P., Fahnestock, S., Lee, T., Orban, J., and Bryan, P., Biochemistry 31, 3597 (1992).Google Scholar
8. Derrick, J. P., and Wigley, D. B., Nature 359, 752 (1992).Google Scholar
9. Stayton, P. S., and Sligar, S. G., Biochemistry 29, 7381 (1990).Google Scholar
10. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S-M., Lee, T., Pope, S. H., Riordan, G. S., and Whitlow, M., Science 242, 423 (1988).Google Scholar
11. Schuening, F., Storb, R., Goehle, S., Meyer, J., Graham, T. C., Deeg, H. J., Appelbaum, F. R., Sale, G. E., Graf, L., and Loughran, T. P., Transplantation 44, 607 (1987).Google Scholar
12. Sandmaier, B. M., Storb, R., Appelbaum, F. R., and Gallatin, W. M., Blood 76, 630 (1990).Google Scholar