Published online by Cambridge University Press: 01 February 2011
Temperature dependence of time-resolved photoluminescence (PL) properties for rare-earth ions (REIs: Eu, Tb, and Er) implanted AlxGa1-xN (x=0∼1) is investigated. Thermal quenching for RE-related PL becomes small when increasing the Al contents. The PL decay time of REIs used in the present work becomes shorter when increasing the temperature and/or PL peak energy. The temperature dependence of PL intensity and the decay time are analysed by assuming phonon assisted energy-back-transfer model, in which the energy in REIs escape to trap levels. From the results, the improvement of PL properties can be well explained by the model, in which the activation energy for energy-back-transfer process is increased as increasing the Al contents.