No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Efficient, low-temperature luminescence at energies far above that of the exciting cw-laser is reported at junctions of GaAs-GaInP2 and GaAs-AlxGa1−x.InP2. The signal originates from the high-band gap layers and disappears only if the excitation energy is tuned below the GaAs band gap, as monitored by up-converted photoluminescence excitation spectroscopy. This shows that the non-linear process is induced by the generation of electrons and holes in the GaAs. Furthermore, it is found that the up-conversion is only observed if the (A1)GaInP2 layers are CuPtB long-range ordered. The reason for this is the inherent presence of metastable states in these ordered alloys. It is argued that cold Auger processes cause the nonlinear effect at these type I interfaces.