Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T02:35:49.307Z Has data issue: false hasContentIssue false

Energy Distribution of Ions in Plasma Etching Reactors

Published online by Cambridge University Press:  28 February 2011

P. Briaud
Affiliation:
Laboratoire de Physique Corpusculaire, U.A.CNRS 838, Université de Nantes, 2 rue de la Houssinière - 44072 Nantes Cedex, France.
G. Turban
Affiliation:
Laboratoire de Physique Corpusculaire, U.A.CNRS 838, Université de Nantes, 2 rue de la Houssinière - 44072 Nantes Cedex, France.
B. Grolleau
Affiliation:
Laboratoire de Physique Corpusculaire, U.A.CNRS 838, Université de Nantes, 2 rue de la Houssinière - 44072 Nantes Cedex, France.
Get access

Abstract

The energy distributions of the positive ions bombarding the ground electrode in a parallel plate plasma etcher have been measured by means of an electrostatic analyzer after extraction through a 50 μm orifice.Three gases were studied; Ar, CF4 and SF6, with pressures varying from 5 mtorr to 200 mtorr as a function of the discharge frequency.In the low frequency regime (25–125 kHz) the maximum energy of the ions is close to the applied potential (i.e., 500–600 eV).A secondary ion peak is observed and attributed to the secondary electron ionization.SF6 plasma exhibits a behaviour different to that of Ar and CF4 plasmas because of the high electron attachment of the molecule.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Toyoda, H., Tobinaga, M. and Koniya, H., Japn.J.Appl.Phys. 20, 681 (1981).Google Scholar
2. Bruce, R.H., J.Appl.Phys. 52, 7064 (1981).Google Scholar
3. Flamm, D.L. and Donnelly, V.M., Plasma Chem.Plasma Proces. 1, 317 (1981).Google Scholar
4. Zarowin, C.B., J.Vac.Sci.Technol. A2, 1537 (1984).CrossRefGoogle Scholar
5. Gottscho, R.A., Burton, R.H., Flamm, D.L., Donnelly, V.M. and Davis, G.P., J.Appl.Phys. 55, 2707 (1984).Google Scholar
6. Gill, M.D., Vacuum 34, 357 (1984).CrossRefGoogle Scholar
7. Gottscho, R.A. and Mandich, M.L., J.Vac.Sci.Technol. A3, 617 (1985).CrossRefGoogle Scholar
8. Donnelly, V.M., Flamm, D.L. and Bruce, R.H., J.Appl.Phys. 58, 2135 (1985).Google Scholar
9. Köhler, K., Coburn, J.W., Home, D.E. and Kay, E., J.Appl.Phys. 57, 59 (1985).CrossRefGoogle Scholar
10. Köhler, K., Home, D.E. and Coburn, J.W., J.Appl.Phys. 58, 3350 (1985).Google Scholar
11. Kushner, M.J., J.Appl.Phys. 58, 4024 (1985).Google Scholar
12. Turban, G., Grolleau, B., Launay, P. and Briaud, P., Rev.Phys.Appl. 20, 609 (1985).Google Scholar
13. Tsui, R.T.C., Phys.Rev. 168, 107 (1968).CrossRefGoogle Scholar
14. Pennebaker, W.B., IBM J.Res.Develop. 23, 16 (1979).Google Scholar
15. Donnelly, V.M., Flamm, D.L., Dautremont-Smith, W.C. and Werder, D.J., J.Appl.Phys. 55, 242 (1984).CrossRefGoogle Scholar