Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:04:42.357Z Has data issue: false hasContentIssue false

Energetics of Dislocation Nucleation under a Nanoindenter

Published online by Cambridge University Press:  10 February 2011

Chuanli Zhang
Affiliation:
Department of Mechanical EngineeringUniversity of California, Riverside, CA92521
Guanshui Xu
Affiliation:
Department of Mechanical EngineeringUniversity of California, Riverside, CA92521
Get access

Abstract

Dislocation nucleation under an idealized nanoindenter is analyzed based on the Peierls-Nabarro dislocation model. The variational boundary integral method is used to obtain the dislocation profiles that correspond to the shear displacements between the adjacent atomic layers along the slip plane. The critical condition for dislocation nucleation at absolute zero and the activation energies required to thermally activate dislocations from their stable to unstable saddle point configurations are determined. By treating the surface as part of an infinite crack embedded in the infinite medium, a rather straightforward approach is adopted to account for the surface effect. The emission of multiple dislocations from the surface of a film-substrate system is also studied. The size effects of the indenter width and film thickness are characterized by the typical load-displacement relation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Doerner, M. F., Gardner, D. S. and Nix, W. D., J. Mater. Res., 1, 854–51 (1986).Google Scholar
2. Oliver, W. C. and Pharr, G. M., J. Mater. Res., 7, 1564–83 (1992).Google Scholar
3. Nix, W. D., Materials Science and Engineering, A234-236, 3744 (1997).Google Scholar
4. Li, X. and Bhushan, B., Thin Solids Films, 340, 210–17 (1999).Google Scholar
5. Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P. and Wyrobek, J. T., Acta mater., 144, 3585–98 (1996).Google Scholar
6. Joyce, S. A. and Houston, J. E., Review of Scientific Instruments, 62, 710–15 (1991).Google Scholar
7. Tangyunyong, P., Thomas, R. C., Houston, J.E., Michalske, T. A., Crooks, R. M. and Howard, A. J., Physical Review Letters, 71, 3319–22 (1993).Google Scholar
8. Johnson, K. L., Contact Mechanics, Cambridge University Press, 1985.Google Scholar
9. Suresh, S., , T-G, , Nieh and Choi, B. W., Scripta mater., 41, 951–7 (1999)Google Scholar
10. Gouldstone, A., Koh, H.-J., Zeng, K.-Y., Giannakopoulos, A. E. and Suresh, S., Acta mater., 48, 2277–95 (2000).Google Scholar
11. Shenoy, V. B., Phillips, R. and Tadmor, E. B., J. Mech. Phys. Solids, 48, 649–73 (2000).Google Scholar
12. Tadmor, E. B., Ortiz, M. and Phillips, R., Philosophical Magazine A, 73, 1529–63 (1996).Google Scholar
13. Landman, U., Luedtke, W. D., Burnham, N. A. and Colton, R. J., Science, 248, 454–61 (1990).Google Scholar
14. Kelchner, C. L., Klein, P. A. and Hamilton, J. C., Physical Review B, 58, 11085–8 (1998).Google Scholar
15. Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C. and Foiles, S. M., Physical Review Letters, 87, 165507/1-4 (2001).Google Scholar
16. Xu, G. and Argon, A. S., Phil. Mag. Lett., 80, 605–11 (2000).Google Scholar
17. Xu, G., Argon, A. S. and Ortiz, M., Phil. Mag., A 72, 415–51 (1995).Google Scholar
18. Xu, G., Argon, A. S. and Ortiz, M., Phil. Mag., A 75, 341–67 (1997).Google Scholar
19. Xu, G. and Zhang, C., J. Mech. Phys. Solids, in press.Google Scholar
20. Schoeck, G. and Pueschl, W., Phil. Mag. A, 64, 931–49 (1991).Google Scholar
21. Rice, J. R., J. Mech. Phys. Solids, 40, 239–71 (1992).Google Scholar
22. Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd., Wiley-Interscience, New York (1982).Google Scholar
23. Xu, G., J. Appl. Mech., 67, 403408 (2000).Google Scholar
24. Rose, J. H., Ferrante, J. and Smith, J. R., Phys. Rev. Lett., 47, 675–8 (1981).Google Scholar