Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:06:37.316Z Has data issue: false hasContentIssue false

Endohedral Metallofullerenes: Isolation and Characterization

Published online by Cambridge University Press:  15 February 2011

H. C. Dorn
Affiliation:
Department of Chemistry, Virginia Tech, Blacksburg, VA 24061-0212
S. Stevenson
Affiliation:
Department of Chemistry, Virginia Tech, Blacksburg, VA 24061-0212
P. Burbank
Affiliation:
Department of Chemistry, Virginia Tech, Blacksburg, VA 24061-0212
Z. Sun
Affiliation:
Department of Chemistry, Virginia Tech, Blacksburg, VA 24061-0212
T. Glass
Affiliation:
Department of Chemistry, Virginia Tech, Blacksburg, VA 24061-0212
K. Harich
Affiliation:
Department of Chemistry, Virginia Tech, Blacksburg, VA 24061-0212
P. H. M. Van Loosdrecht
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120-6099
R. D. Johnson
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120-6099
R. Beyers
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120-6099
J. R. Salem
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120-6099
M. S. De Vries
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120-6099
C. S. Yannoni
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120-6099
C. H. Kiang
Affiliation:
Materials and Molecular Simulation Ctr., Beckman Institute, Caltech, Pasadena, CA 91125
D. S. Bethune
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120-6099
Get access

Extract

Since the initial discovery of fullerenes nearly a decade ago [1], material scientists have focused attention on the possibility of encapsulating one or more metal atoms inside these spheroidal carbon frames. The experimental realization of macroscopic quantities of endohedral metallofullerenes (Am@C2n, n=30-55) in the early 1990's has heightened interest in developing this new class of tunable materials with possible electronic and/or optical applications [2,3]. They have been characterized by a number of spectroscopic techniques, for example, scanning tunneling microscope [4,5], EXAFS [6,7] and x-ray diffraction and electron microscopy [8]. However, low production yields and purification difficulties have hampered the development of this new class of materials. The soluble product distribution usually consists of high levels of the empty-caged fullerenes C60, C70, C84 and decreasing levels of the higher fullerenes, while the endohedral metallofullerene fraction usually constitutes less than 1% of the total soluble yield. Furthermore, the endohedral metallofullerene fraction consists of molecules with different numbers of metal atoms encapsulated (m=1-3), cage sizes (C2n) and isomers of the same mass (e.g., Er2@C82). The purification process is further complicated by the chemical reactivity of several endohedral metallofullerenes [9] in aerobic environments. For several years, we have been involved in a collaborative effort to develop methodology for detection, isolation, and characterization of endohedral metallofullerenes. The focus of the present study is on fullerenes encapsulating metals from Group II1b, (Sc@C2n, Y@C2n, and La@C2n) and the lanthanide series metal (Er@C2n).

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. and Smalley, R. E., Nature 218, 162 (1985).Google Scholar
2. Bethune, D. S., Johnson, R. D., Salem, J. R., Vries, M. S. de and Yannoni, C. S., Nature 366, 123 (1993).Google Scholar
3. Schwarz, H., Weiske, T., Böhme, D. K. and Hrusak, J., in Buckminsterfullerenes, eds. Billups, W. E. and Ciufolini, M. A., VCH publishers, New York (1993), p. 257.Google Scholar
4. Wang, H.-D., Xue, Q. K., Hashizume, T., Shinohara, H., Nishima, Y. and Sakurai, T., Phys. Rev. B 48, 15492 (1993).Google Scholar
5. Shinohara, H., Kishida, M., Nakane, T., Kato, T., Bandow, S., Saito, Y., Wang, X-D., Hashizume, T. and Sakurai, T., in Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, (eds. K. M., Kadish and Ruoff, R. S.), 1361–1381, (Electrochem. Soc., NJ, 1994).Google Scholar
6. Park, C-H., Wells, B. O., DiCarlo, J., Shen, Z-X., Salem, J. R., Bethune, D. S., Yannoni, C. S., Johnson, R. D., Vries, M. S. de, Booth, C., Bridges, F. and Pianetta, P., Chem. Phys. Lett. 213, 196 (1993).Google Scholar
7. Kikuchi, K., Nakao, Y., Achiba, Y., Nomura, M., in Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, (eds. Kadish, K. M. and Ruoff, R. S.), 1300–1308, (Electrochem. Soc., NJ, 1994).Google Scholar
8. Beyers, R., Kiang, C-H., Johnson, R. D., Salem, J. R., Vries, M. S. de, Yannoni, C. S., Bethune, D. S., Dorn, H. C., Burbank, P., Harich, K. and Stevenson, S., Nature 370, 196 (1994).Google Scholar
9. Bandow, S., Kitagawa, H., Mitani, T., Inokuchi, H., Saito, Y., Yamaguchi, H., Hayashi, N., Sato, H. and Shinohara, H., J. Phys. Chem. 96, 9609 (1992).Google Scholar
10. Krdtschmer, W., Lamb, L. D., Fostiropoulos, K. and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
11. Loosdrecht, P. H. M. van, Johnson, R. D., Beyers, R., Salem, J. R., Vries, M. S. de, Bethune, D. S., Burbank, P., Haynes, J., Glass, T., Stevenson, S., Dorn, H. C., Boonman, M., Bentum, P. J. M. van, Meijer, G., in Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, (eds. Kadish, K. M. and Ruoff, R. S.), 1309–1319, (Electrochem. Soc., NJ, 1994).Google Scholar
12. Stevenson, S., Dorn, H. C., Burbank, P., Harich, K., Haynes, J., Kiang, C-H., Salem, J. R., Vries, M. S. de, Loosdrecht, P. H. M. van, Johnson, R. D., Yannoni, C. S., Bethune, D. S., Anal. Chem. 66, 26752679 (1994).Google Scholar
13. Shinohara, H., Yamaguchi, H., H., , Hayashi, N., Sato, H., Ohkohchi, M., Ando, Y. and Saito, Y., J. Phys. Chem. 97, 42594261 (1993).Google Scholar
14. Shinohara, H., Sato, H., Ohkohchi, M., Ando, Y., Kodama, T., Shida, T., Kato, T. and Saito, Y., Nature 357, 5254 (1992).Google Scholar
15. Shinohara, H., Inakuma, M., Hayashi, N., Sato, H., Saito, Y., Kato, T. and Bandow, S., J. Phys. Chem. 98, 85978599 (1994).Google Scholar
16. Stevenson, S., Dorn, H. C., Burbank, P., Harich, K., Sun, Z., Kiang, C-H, Salem, J. R., Vries, M. S. de, Loosdrecht, P. H. M. van, Johnson, R. D. and Yannoni, C. S., Anal. Chem. 66, 26802685 (1994).Google Scholar
17. Loosdrecht, P. Y. M. van, Johnson, R. D., Vries, M. S. de, Bethune, D. S., Dorn, H. C., Burbank, P. and Stevenson, S., Phys. Rev. Lett. 23, 34153418.Google Scholar
18. Shinohara, H., Sato, H., Ohkohchi, M., Ando, Y., Kodama, T., Shida, T., Kato, T., and Saito, Y., Nature 357, 5254 (1992).Google Scholar
19. Yannoni, C. S., Hoinkis, M., Vries, M. S. de, Bethune, D. S., Salem, J. R., Crowder, M. S. and Johnson, R. D., Science 256, 11911192 (1992).Google Scholar
20. Kato, T., Suzuki, S., Kikuchik, K. and Achiba, Y., J. Phys. Chem. 97, 1342513428 (1993).Google Scholar
21. Schmidt, P. P., Dunlap, B. I. and White, C. T., J. Phys. Chem. 95, 1053710541 (1991).Google Scholar
22. Joslin, C. G., Yang, J., Gray, C. G., Goldman, S. and Poll, J. D., Chem. Phys. Lett. 208, 8692 (1993).Google Scholar
23. Kikuchi, K., Suzuki, S., Nakao, Y., Nakahara, N., Wakabayashi, T., Shiromaru, H., Saito, K., Ikemoto, I. and Achiba, Y., Chem. Phys. Lett. 216, 6771 (1993).Google Scholar
24. Yamamoto, K., Funasaka, H., Takahashi, T. and Akasaka, T., J. Phys. Chem. 98, 20082011 (1994).Google Scholar